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Abstract

Railway wheel wear prediction is essential for reliabilityand optimal maintenance strategies of railway systems. Indeed, an accurate
wear prediction can have both economic and safety implications. In this paper we propose a novel methodology, based on Archard’s
equation and a local contact model, to forecast the volume ofmaterial worn and the corresponding wheel Remaining UsefulLife
(RUL). A universal kriging estimate of the wear coefficient is embedded in our method. Exploiting the dependence of wear
coefficient measurements with similar contact pressure and sliding speed, we construct a continuous wear coefficient map that
proves to be more informative than the ones currently available in the literature. Moreover, this approach leads to an uncertainty
analysis on the wear coefficient. As a consequence, we are able to construct wear prediction intervals that provide reasonable
guidelines in practice.
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1. INTRODUCTION

In the maintenance of railway wheel suspending operations,
reductions in transportation and safety accidents caused by un-
foreseen failures are very costly, both in terms of repairs and
unrealized profits. These huge losses arouse great interestin
the development of efficient methods and procedures that could
reduce unforeseen failures and improve equipments safety and
availability [1]. Prognostics enables safer and more reliable op-
erations, allowing the equipment to run as long as it is healthy.
Moreover, it is useful for optimally scheduling the maintenance
interventions. In other words, prognostics substantiallyhelps in
achieving the goals of maximum safety and availability, mini-
mum unscheduled shutdowns of transportation and economic
maintenance [2], which are issues of utmost relevance for rail-
way systems. In this paper, we propose a novel methodology
to predict the future degradation of railway wheel, by means
of wear, and to calculate the Remaining Useful Life (RUL),
namely the residual distance that the wheel can run according
to its design specifications.

According to [3], the wheel wear of rail vehicles is typi-
cally predicted evaluating either the sliding contact by using
Archard’s equation, or rolling/sliding contact by using the en-
ergy dissipation effect (developed for the first time in [4]). Ar-
chard’s equation is more commonly used in railway industry
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for wear prediction [3, 5, 6, 7]; indeed, it has been success-
fully applied in [8] to predict wear of roller bearings, which is
quite similar to wheel-rail rolling contact wear. For this reason,
we choose to employ Archard’s equation in our methodology.
Briefly, Archard’s equation states that the volume of material
wornVw is proportional to the sliding distances and the normal
load N, and inversely proportional to the hardness of material
H, namely

Vw = K
sN
H
, (1)

where the wear coefficient K is a dimensionless constant that
indicates the severity of wear.

Wear is a complicated process that involves a large variety of
contributions from different phenomena, combining the short-
term dynamics that produces the wear debris and the long-term
dynamics of the material transportation that goes on. For these
reasons, exact wear prediction is usually unattainable. Asfor
engineering applications, the sliding contact model seemssuffi-
ciently accurate and adequate to approximate the wheel failure
due to wear.

The wear coefficientK plays an important role in wheel wear
prediction through equation (1). Currently, it can be derived
from laboratory tests or, alternatively, from extensive calibra-
tions based on geometrical comparisons between simulated and
measured wheel profiles. Nowadays there exist in literature
a few wear charts and maps for the wear coefficient K as a
function of contact pressurep and sliding speedv, concern-
ing different rail-wheel materials and environments (see for ex-
ample Figure 1, with data from [5], or the charts presented in
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[9]). Conversely, there are really limited data on cases where
third body materials (grease, water, friction modifiers etc.) are
present [10]. The available wear maps are mostly for dry condi-
tions. Furthermore, they are not very accurate due to the limited
number of experiments available in each condition. Hence such
charts are of restricted usefulness and it would be desirable to
have more accurate maps.

Given this background, it is advisable to provide a measure of
the uncertainty concerning wear prediction. Actually, no uncer-
tainty analysis is usually supplied by available wear prediction
tools. In sensitivity analysis, metamodels are built to approxi-
mate the behavior of large computational models and study how
the inputs can influence the predicted output values. Several
global sensitivity analysis techniques have been investigated in
literature (see e.g. [11]). Regression-based methods employ
linear regression models to measure the effect of the inputs on
the model response. For example, polynomial chaos expansion
[12, 13] and sparse polynomial chaos expansion [14] of the re-
sponse have been shown to provide an efficient and accurate
computation of global sensitive indices. Another class of tech-
niques is based on an ANOVA decomposition (variance-based
methods) of the output variance as a sum of contribution of the
different inputs. In this framework, a complex model can be
approximated via smoothing spline ANOVA [15] or using state
dependent parameter modeling [16, 17, 18]. Gaussian process
models [19] and kriging [20] have also been successfully ap-
plied to build metamodels. All these different approaches are
very useful when there is uncertainty about the input valuesin
a particular setting and evaluating the actual model response on
all possible input configurations requires too much time. An
underlying hypothesis is the smoothness of the function of re-
sponse given inputs. Here we want to employ a methodology
similar to these global sensitivity analysis techniques, to com-
pute the wear coefficient K given the contact pressurep and
sliding speedv as inputs. In this setting we do not have any
uncertainty about the values of pressure and speed (since they
are derived by the local contact model as explained in Section
2). However, an approximate model of the wear coefficient K
is needed because, as noted above, only a limited number of
experiments, for particular choices ofp andv, are available.

In this paper we propose a novel wear prediction methodol-
ogy that provides an assessment for the wear of a rail vehicle
wheel with uncertainty. The wear coefficient is estimated in a
continuous way by using spatial statistic techniques (in partic-
ular, universal kriging). In this way, we are able to take ad-
vantage of the spatial dependence of measures (in thev and p
plane) to overcome the issue of having few available data. In
addition, these techniques provide a measure of the uncertainty
concerning the value of the coefficientK. Hence, we can com-
pute a prediction interval forK associated to each choice ofv
and p instead of a single point prediction. As a consequence,
our model predicts a range for the amount of wheel material
removal and a prediction interval for the RUL.

In the following, Section 2 contains the wheel wear model
proposed; Section 3 shows the mathematical model used to es-
timateK with uncertainty, and Section 4 describes the predic-
tion of RUL. Finally, applications of the proposed methodology

are presented in Section 5.

2. WHEEL WEAR MODEL

The degradation model for wheel wear prediction adopted in
this article is shown in Figure 2. We consider the wear coeffi-
cientK involved in Archard’s equation as a function of contact
pressurep and sliding speedv, both varying over the specific
contact patch of interest. A local contact model is implemented
by employing the non-Hertzian contact method developed in
[21]. Using this method, we estimate the shape of the con-
tact patch and the pressure distribution given the normal force,
the local geometry and the material properties. Here the con-
tact stress distribution is assumed to be ellipsoidal and itis dis-
cretized in the direction of rolling. The density of discretization
can be tuned to ensure that the size of each cell is small enough
to consider the pressurep as a constant on the cell. Next, the
corresponding sliding speed for each cell in the slip area ofthe
contact patch is obtained using the method suggested in [5],as
depicted in Figure 3. In detail, the sliding velocity is given by

~v = Vvehicle

[

γ2 + γ3x
γ1 − γ3y

]

, (2)

whereVvehicle is is the forward speed of wheel;γ1, γ2 andγ3 are
respectively the longitudinal, lateral and spin creepages; x, y are
the Cartesian coordinates of the contact patch. The creepages
can be obtained from multibody system (MBS) simulation of a
rail vehicle or, alternatively, from field measurement combined
with some post-processing. We employ the latter strategy in
our methodology, in accordance with [3]. By using Archard’s
equation (1), the wear volume at the center of each cellj is
therefore approximated by

Vw, j = K(p j, v j)
s jN j

H
j = 1, . . . , n. (3)

Then, we compute the total wear volume after a given run-
ning distance of the wheel, assuming that the contact patch re-
mains constant when the wheel is running on a straight track,
using the formula

Vw,tot = Vw,patch

(

1+ m
L
2a

)

, (4)

whereVw,patch =
∑n

j=1 Vw, j is the wear volume over the contact
patch,m is the maximum discrete number of contact patches
in the rolling direction,L is the running distance of the wheel
center of mass, and 2a is the maximum length of the contact
patch in the rolling direction (see Figure 4).

3. WEAR COEFFICIENT ESTIMATION WITH UNCER-
TAINTY

To estimate (with uncertainty) the wear coefficient K that is
needed in the wheel wear model presented in Section 2, we use
data taken from [22] as collected and preprocessed by Lewis
and Olofsson in [9]. Experiments have been carried out using
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Figure 1: Wear coefficientK chart, with data from [5]. Figure 2: The proposed methodology for wheel wear prediction.

Figure 3: Sliding speed for each cell in contact patch, computed as sug-
gested in [5]. Figure 4: Illustration of the total wear volume calculation in (4).
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Figure 5: Locations of wear coefficient K measures. Colors indicate the
different rail disc materials.

Estimate Std. Error t value Pr(> |t|)

β0 2.564 0.114 22.52 <2e-16
β1 -3.651 0.442 -8.26 6.17e-13
β2 -3.081 0.514 -5.99 3.33e-08
β3 -4.145 0.571 -7.27 8.31e-11
β4 14.534 2.213 6.57 2.33e-09
β5 22.564 5.079 4.44 2.30e-05
β6 23.498 4.337 5.42 4.16e-07
β7 0.00243 0.000431 5.64 1.57e-07
β8 0.00170 0.000433 3.91 1.67e-04
β9 0.00258 0.000470 5.49 3.10e-07

Table 1: Estimates, standard errors and t-tests for the nullity of the coeffi-
cients of the linear model in (8).
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a wear testing machine in dry, cool condition for Class D tyre
and four different rail materials: BS11, UICA, UICB and 1%
Chrome. We have more than 100 measurements of the wear
coefficient, according to varying sliding speedv and contact
pressurep. Figure 5 shows the locations of wear coefficient
K measurements, colored according to the rail material used.
Unfortunately, most of observations lie in the range 400-1300
MPa and 0.00-0.08 m/s and only few experiments belong to
more extreme regimes. Moreover, the distribution of the mea-
surements in thev and p plane differs among the different rail
materials. In particular, all the extreme regimes measurements
belong to BS11 rail. Therefore, we propose to estimate the wear
coefficientK with a spatial statistics model (universal kriging),
exploiting similarities among different materials and the spatial
dependence of data (in thev and p plane). In this way we are
able to partially overcome the limitation of having few available
measurements. In the following, we briefly review the funda-
mentals of universal kriging, as employed here. A detailed pre-
sentation of spatial statistics theory can be found, for instance,
in [23].

Let D ⊂ R
2 be a fixed subset ofR2 that contains a rectangle

of positive area, and consider the random process{Z(s) : s ∈ D}.
Given a set ofN realizationsZ(s1), . . . ,Z(sN) at known spatial
locations{s1, . . . , sN}, we are interested in finding the random
processZ that best describes the observed data. In universal
kriging, the assumed model is

Z(s) = µ(s) + δ(s), s ∈ D (5)

whereµ(·) = β0 f0(·) + · · · + βp fp(·) is the drift (or large scale
variability) given by an unknown linear combination of known
functions, andδ(·) is a zero-mean second-order stationary and
isotropic random process, i.e. for everys, si, sj ∈ D we have
E[Z(s)] = µ(s), E[δ(s)] = 0 and Cov(δ(si), δ(sj)) = C(‖si − sj‖).
Given these assumption, the random process has variogram
2γ(·), defined by 2γ(si − sj) = Var(δ(si) − δ(sj)). The universal
kriging prediction in a new locations0 is then given by the best
linear unbiased predictor of the form

Ẑ(s0) =
N
∑

i=1

λiZ(si). (6)

Using the kriging prediction̂Z(s0) and the corresponding vari-
anceσ̂2(s0), prediction intervals can be constructed. Specifi-
cally, under the assumption thatZ is Gaussian, the interval

I(s0) =
(

Ẑ(s0) − z1− α2
σ̂(s0), Ẑ(s0) + z1− α2

σ̂(s0)
)

(7)

wherez1− α2
is the quantile of order 1− α2 of the standard normal

distribution, is the (1−α)100% prediction interval for̂Z(s0), i.e.
the interval such that Pr(Z(s0) ∈ I(s0)) = (1− α)100%.

3.1. A linear model for the drift

The first step consists of using a linear model to estimate the
drift (large scale variability) and to assess whether thereare sta-
tistically significant differences in wear coefficient among the
four different rail materials (details on this type of model can

be found, for example, in [24]). Given that the distributionof K
is highly asymmetrical and concentrated on very small values,
we perform a logarithmic transformation on this variable. Then
we start fitting a linear model with response log(K), in which
sliding speedv and contact pressurep constitute the quantita-
tive predictors, and rail materials make up categorical variables.
Interactions between sliding speed and rail materials, as well as
between contact pressure and rail materials, are also included
in the complete linear model. Stepwise variable selection leads
to the reduced model:

log(K) = β0 + β1 · BS 11+ β2 · UICB + β3 · 1%Chr

+ β4 · BS 11 · v + β5 · UICB · v + β6 · 1%Chr · v

+ β7 · BS 11 · p + β8 · UICB · p + β9 · 1%Chr · p + ǫ,
(8)

whereBS 11, UICB and 1%Chr are dummy variables that
take the value 1 to indicate the corresponding rail material(we
haveUICA when all the three dummy variables are 0). Table 1
shows coefficients estimates, standard errors and p-values of the
t-tests assessing whether such coefficients are 0: all the regres-
sors are significant. Moreover, the F-test assesses the signifi-
cance of the model (p-value< 2.2e−16) and the adjusted coef-
ficient of determinationR2 is quite high (0.65), so the model fits
the data quite well. However, residuals do not respect the inde-
pendence assumption, that is fundamental for the linear model.
In fact, as revealed for example by the sample variogram in
Figure 6, residuals are spatially correlated (the space being the
v andp plane); hence, we exploit this feature to accurately pre-
dict the value of the coefficientK by using universal kriging, as
explained below. Figure 7(a) shows the drift given by the linear
model, concerning BS11 rail. The drift for the other rail mate-
rials can be found in panel (a) of the Additional Figures A.11,
A.12 and A.13.
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Figure 6: Sample variogram (dots) and fitted spherical variogram (line).

4



(a) (b)

(c) (d)

Figure 7: Wear coefficientK (10−4) maps concerning BS11 rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the prediction
with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.

3.2. Prediction and uncertainty analysis with universal kriging

We consider our data as spatial data, with coordinates given
by the sliding speedv (m/s) and the contact pressure ˜p (10−4

MPa), where the pressure scale is changed in order to obtain
comparable coordinates ranges. Our aim is to predict the wear
coefficient K within the domainD = {0 < v < 0.25, 0 < p̃ <
0.2}, taking advantage of the spatial correlation of data. We
adopt model (5) with random processZ(·) = log(K(·)), i.e.

log(K(s)) = µ(s) + δ(s), s ∈ D, (9)

where the large scale variabilityµ(·) is chosen as the reduced
linear combination of the regression model (8) obtained above.
We fit a spherical variogram model to the estimated one, fix-
ing the nugget thanks to some repeated measures of the wear
coefficient in the same positions (see Figure 6). The isotropic
variogram is given by

γ(h) =



























0 h = 0

c0 + cs

[

3‖h‖
2as
− 1

2

(

‖h‖
as

)3
]

0 < ‖h‖ ≤ as

c0 + cs ‖h‖ > as

(10)
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Figure 8: Sketch map of RUL prediction.

Large
creepage

Small
creepage

Longitudinal
creepageγ1

-0.0020 -0.0004

Lateral
creepageγ2

-0.0015 -0.0003

Normal force
N

60 kN

Velocity Vvehicle 30 m/s

Table 2: Parameters used in the two conditions considered.
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Figure 9: Wear distribution over contact patch in (a) large creepage case and (b) small creepage condition. The different lines refer to the values of the wear
coefficientK used: universal kiging predictions (Prediction), 90% prediction intervals (Lower bound and Upper bound), average values in each region of the wear
chart in Figure 1 (Average) and constantK from [3] (Reference).

where the nugget isc0 = 0.178, the parameter of the spherical
model iscs = 0.142 and the range isas = 0.0375. Universal
kriging is then used to predict log(K(·)) on a grid in the domain
D, for each of the four rail materials considered. The prediction
variance is also computed on the grid, allowing the construction
of 90% pointwise prediction intervals for log(K(·)) by equation
(7) with α = 0.1 on each point of the grid, under the assump-
tion that log(K(·)) is Gaussian (and henceK(·) is log-normal).
Figure 7(b) shows the prediction obtained with this model con-
cerning the BS11 rail material, while Figures 7(c) and (d) depict
the 90% pointwise prediction intervals. Analogous plots for the
other rail materials can be found in Additional Figures A.11,
A.12 and A.13. It is important to notice that kriging prediction
is much more informative than the piecewise constant chart in
Figure 1 from [5]. Moreover, it is comparable to the wear coeffi-
cient map in [9] and, in addition, it is associated with a rigorous
quantification of uncertainty (prediction intervals).

4. REMAINING USEFUL LIFE PREDICTION

We use a model-based prognostics approach to predict the
RUL of train wheel (reviews on model-based prognostics ap-
proaches for RUL computation can be found in [25] and [26]).
First we use Archard’s equation (1) and the wear model pre-
sented in Section 2 to predict the wheel degradation trend inthe
future. Next, we combine this prediction with a known failure
threshold to calculate the RUL (see [27] and [28]). The RUL
predicted atL(i) (i.e. for a wheel that has already run a distance
L(i)) is given by the expression

RUL (L(i)) =
[

L f (i)
∣

∣

∣ Vw,tot

(

L f (i)
)

= VT

]

− L(i), (11)

whereL f (i) is the predicted running distance when the wear
of the wheel reaches its failure thresholdVT . L f (i) can be ob-
tained using (4). In our application, the only source of uncer-
tainty in RUL (L(i)) is the wear coefficient K. Using the upper
and lower bounds of the 90% pointwise prediction intervals for
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Longitudinal creepageγ1 0.00043 Normal forceN 63.396 kN
Lateral creepageγ2 0.00156 Running distanceL 49300 km

Spin creepageγ3 0.163 1/m Constant wear coefficientK 3.56×10-4

Velocity Vvehicle 27.8 m/s Measured wear volume 235.84×103 mm3

Table 3: Relevant parameters for the simulation, from [3].

Vw,tot,L

(×103 mm3)
Vw,tot,P

(×103 mm3)
Vw,tot,U

(×103 mm3)
Factor

Case 1 58.02 130.29 292.84 0.5525
Case 2 104.92 243.39 565.85 1.0320
Case 3 66.44 151.63 346.52 0.6429

(a)

RULL

(×103 km)
RULP

(×103 km)
RULU

(×103 Km)

326.61 112.74 20.40

(b)

Table 4: Simulation results concerning (a) the wear volume in the three cases of contact locations and (b) the RUL in the second case.Vw,tot,L, Vw,tot,P andVw,tot,U

indicate, respectively, the total wear volume obtained by applying the lower bound, the prediction and the upper bound ofthe wear coefficientK estimated through
universal kriging.RULL, RULP, RULU have the same meaning for the RUL.

K computed in Section 3, we can create inferior and superior
bands for RUL can be predicted. Figure 8 shows the sketch
map of RUL prediction.

5. SIMULATION RESULTS

5.1. The effect of wear coefficient K on wear prediction

In order to analyze the effect of the wear coefficient K on
wear prediction over a single contact patch, two typical condi-
tions are considered for comparison: large creepage and small
creepage (details about the parameters used in the two condi-
tions can be found in Table 2). In both cases the wheel/rail
combination is chosen so that the wheel profile is S1002 and
the rail profile is UIC60, with the material property of BS11
and an inclination of 1/20 for each rail. The normal forceN is
60 kN and the speedVvehicle is 30 m/s.

Simulations are carried out using the universal kriging pre-
dictions and the 90% prediction intervals for the wear coeffi-
cient K as computed in Section 3 (Figure 7). Moreover, we
compare our methodology with simulations performed evaluat-
ing the wear coefficient K in different ways. In particular, we
simulate the wear volume considering average values in each
region of the wear chart in Figure 1 (data from [5]) and assum-
ing the coefficient K is constant, with value 3.56 × 10−4 ac-
cording to reference [3]. The resulting wear depths have been
normalized with respect to the maximum value obtained in the
averageK case. Figure 9 depicts the wear distribution over a
contact patch with the given conditions, for the different choices
of the wear coefficient.

These results suggest that uncertainty in the wear coefficient
affects both the wear distribution and the wear amount over the
whole contact patch, depending on the contact situation. The
constant and averageK lead to underestimating and overesti-
mating the wear volume with respect to the prediction band ob-
tained using universal kriging, in simulation scenarios oflarge
and small creepages, respectively.

5.2. Application to a real case prediction

One real case is chosen from the literature with the aim to val-
idate our methodology. According to [3], we use the parameters
shown in Table 3 for the simulation. In addition, the wheel/rail
contact combination is chosen to be S1002 wheel profile and
UIC60 rail profile as in [3], with rail material BS11. We con-
sider three contact locations around the nominal rolling circle
of the wheel from left to right, because the exact contact posi-
tion is not provided in the reference. As for the computationof
the RUL, we fix the failure threshold at 800×103 mm3, corre-
sponding to a re-profile interval of the wheel. This threshold is
used here as example and should not be adopted in practice: in
fact, in each real application the threshold should be carefully
chosen based on specific circumstances.

The results obtained using our methodology to compute wear
volume are given in Table 4(a), and the corresponding RUL in
case 2 in Table 4(b). Moreover, the wear distributions over the
contact patch in the second case are presented in Figure 10. We
can observe that the choice of wear coefficient influences the
distribution of wear depth over the contact patch and, conse-
quently, affects the vehicle dynamic behavior.

Comparing simulation results with the measured wear vol-
ume (235.84×103 mm3), we see that our prediction factors,
defined as the ratio between calculated and measured values,
range from 0.55 to 1.03 in the three different contact locations
considered. In all cases, these results are much better thanby
fixing K = 3.56× 10−4 as in [3], which leads to a prediction
factor of 4.23. Moreover the measured data falls, in each of the
three contact locations, inside our prediction interval. Hence,
we can conclude that our prediction methodology is quite ef-
fective.

6. CONCLUSIONS

In this paper we proposed a novel wear prediction method-
ology that accounts for dependence of wear coefficient K on
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Figure 10: Wear distribution over contact patch simulated byusing (a) universal kriging prediction forK, (b) averageK values in each region of the wear chart in
Figure 1 and (c) constantK from [3].

contact pressure and sliding speed, as they vary over the con-
tact patch. Our methodology also quantifies uncertainty onK.

We applied this approach to two typical contact conditions
in Section 5.1, to analyze the effect of wear coefficient uncer-
tainty on wear prediction over a single contact patch. The sim-
ulations revealed that both wear distribution and wear amount
over the whole contact patch are affected by this uncertainty.
This should be taken into account in wear prediction, especially
when incorporating multibody dynamics simulation of rail ve-
hicle system in the model.

In Section 5.2, we validated our methodology on a real case
prediction. Our results are much better than those currently
available in literature, and the measured wear volume fallsin-
side our prediction intervals.

It should be noted that many factors involved in the predic-
tion, such as material hardness, contact situation, creepages etc,
are not known with accuracy and can affect final results, by
adding errors. However, the uncertainty analysis we performed
on the wear coefficient is expected account for these additional
error sources. Therefore, the methodology proposed in thispa-
per can provide reasonable guidelines in practice. Nevertheless,
further studies on the effect of the uncertainty of the wear coef-
ficient on wheel profile wear prediction are needed, as well as
a strong validation of our methodology. Moreover, the method
from [21] for the local contact model and the online calcula-
tion of wear coefficient enable our wear prediction model to
be incorporated into multibody dynamics simulation (see [29]).
This co-simulation technology is expected to be even more ef-
fective.
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AppendixA. Additional figures

(a) (b)

(c) (d)

Figure A.11: Wear coefficient K (10−4) maps concerning UICB rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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(a) (b)

(c) (d)

Figure A.12: Wear coefficient K (10−4) maps concerning UICA rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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(a) (b)

(c) (d)

Figure A.13: Wear coefficient K (10−4) maps concerning 1%Chr rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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