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Abstract

We develop a new method to locally cluster curves and discover functional motifs,
i.e. typical shapes that may recur several times along and across the curves capturing
important local characteristics. In order to identify these shared curve portions, our
method leverages ideas from functional data analysis (joint clustering and alignment
of curves), bioinformatics (local alignment through the extension of high similarity
seeds) and fuzzy clustering (curves belonging to more than one cluster, if they contain
more than one typical shape). It can employ various dissimilarity measures and
incorporate derivatives in the discovery process, thus exploiting complex facets of
shapes. We demonstrate the performance of our method with an extensive simulation
study, and show how it generalizes other clustering methods for functional data.
Finally, we provide real data applications to Italian Covid-19 death curves and Omics
data related to mutagenesis.
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1 Introduction

Given a set of curves, we consider the problem of discovering functional motifs inside them,
i.e. typical shapes (continuous curve portions) that may recur within each curve, and across
several curves in the set (see Fig. 1). Some of these motifs may be present in most of the
curves, but in different positions. Conversely, other motifs may characterize subgroups of
curves and thus differentiate among them based on local shape similarities. We provide
a novel method for functional motif discovery that aligns curves locally to identify their
shared continuous portions, employing different definitions of (dis)similarity. Importantly,
neither the motifs nor their number, lengths, or radii (i.e., the maximum dissimilarity
between a motif shape and a portion of curve containing it) need to be known in advance;
lengths and radii are specific to each motif.

Our motivating example is the study of mutagenesis, i.e. the processes that generate
mutations in the DNA sequence of an organism. The aim is to identify “signature shapes”
in multidimensional curves consisting of multiple types of mutation rates measured at
high resolution along the genome (see Subsection 5.2). Each of these shapes, or motifs,

represents a specific mutagenesis pattern, which recurs in a set of genomic regions and
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Figure 1: Example of curves comprising three functional motifs (dashed, dotted and dot-

dash continuous portions of curves, respectively; one curve has no motifs).



is characterized by a certain genomic landscape. Functional motif discovery can also be
useful to study protein-DNA interactions — an area in which shape has already been shown
to carry biological information (Cremona et al., 2015). For instance, functional motifs in
the 1-dimensional curves of ChIP-seq signals could help us distinguish different protein-
DNA binding. Functional motifs are relevant in many other domains. For example, in
finance, one may be interested in detecting recurrent patterns in the time series of asset
prices related to different companies. This is an important problem in technical trading
analysis, whose rules aim at predicting price changes based on observed patterns. A related
problem is the detection of financial bubbles — which are characterized by a rapid surge
in prices, not justified by the fundamentals, followed by an unexpected crash — in data
such as stock market indices or exchange rates. Outside the “Omics” and financial fields,
detecting functional motifs in weather time series may help us understand some aspects
of climate change, while detecting functional motifs in time series generated by wearable
devices, e.g., accelerometer data, may help us characterize patterns of physical activity.
During the last two decades, the analysis of curves has received increasing attention and
interest in the statistical literature. Indeed, several functional data analysis methods have
been developed and applied in many fields (see, e.g., Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006; Horvath and Kokoszka, 2012). Several algorithms have been proposed to
cluster aligned functional data (reviewed in Jacques and Preda, 2014). Since functional data
are very often misaligned, algorithms have also been proposed to simultaneously cluster and
align curves (Liu and Yang, 2009; Sangalli et al., 2010; Park and Ahn, 2017). All these
methods consider the curves globally, over their entire domain of definition. However,
in many applications, separation in groups may occur only on a portion of the domain;
this type of clustering structure might be missed by methods that consider curves in their
entirety. The multivariate counterpart of this domain selection problem is usually referred
to as feature selection and has been widely studied (see, e.g., Friedman and Meulman, 2004;
Witten and Tibshirani, 2010). In the functional framework, Fraiman et al. (2016) and
Floriello and Vitelli (2017) proposed methods to cluster curves while performing feature

(i.e. domain) selection. More recently, Vitelli (2019) integrated curve alignment in the



sparse clustering procedure.

The problem of functional motif discovery we tackle here is more general and, to the
best of our knowledge, it has never been studied in the statistical literature. To identify
motifs, we define clusters locally on continuous portions of the misaligned curves and allow
each cluster to contain multiple portions of the same curve (i.e. multiple instances of the
same functional motif). In addition, we allow each curve to belong to zero, one, or multiple
clusters (i.e. to comprise zero, one, or multiple functional motifs). This problem is the
continuous version of sequence motif discovery, which is ubiquitous in bioinformatics and
“Omics” sciences (see, e.g., Bailey et al., 2006) and consists of searching for highly similar
patterns in a set of DNA or protein sequences. While these are discrete sequences of
symbols (4 nucleotides, or 20 amino acids), we consider curves that can attain any real
values and can be multivariate (i.e. take values in R?). A similar problem for time series
has been addressed by the data mining community (Lin et al., 2002; Mueen et al., 2009; Yeh
et al., 2016, 2018) defining a motif as a pattern repeated multiple times within a single time
series. Available tools generally employ the Euclidean distance or the correlation between
portions of the time series. They usually require as input the length and the number of
motifs to be found, although Linardi et al. (2018) recently introduced an algorithm that
finds all motifs in a given range of lengths. Importantly, these tools require a user-specified
minimum distance within which two portions of the time series are considered the same
motif (i.e. a motif radius), and this distance is the same across motifs.

We embed the problem of functional motif discovery in a full-blown functional frame-
work, which allows us to capture complex shape characteristics by incorporating derivatives
in the discovery process. The functional framework also allows us to rigorously define vari-
ability within each motif, and to naturally reduce noise in the curves through smoothing.
Our novel method, probabilistic K-means with local alignment (probKMA), leverages ideas
from functional data analysis, bioinformatics, and fuzzy clustering in order to identify K
shared curve portions, which represent K candidate functional motifs in the set of curves
under consideration. Similar to the K-means with (global) alignment of Sangalli et al.

(2010), we simultaneously perform clustering and alignment of curves. However, we employ



local alignment in place of their global alignment. Also, similar to BLAST-type algorithms
in bioinformatics (Altschul et al., 1990), we perform local alignments through the extension
of high similarity seeds. Finally, similar to fuzzy clustering in which points can belong to
multiple clusters (Bezdek, 1981; Bezdek et al., 1984), curves can be associated with zero,
one, or more than one cluster (if they contain zero, one, or more than one typical shape).

The article is organized as follows. In Section 2 we present probKMA’s theoretical
setting, formulate it as an optimization problem, derive necessary conditions for its solution,
and describe its algorithmic implementation. In Section 3 we discuss the evaluation of the
clusters produced and identification of the motifs discovered. In Section 4 we provide
simulation studies to evaluate probKMA and compare it to other approaches. We present

real data applications in Section 5 and provide concluding remarks in Section 6.

2 Probabilistic K-means with local alignment

2.1 Optimization problem and necessary conditions

We consider a set of N (d-dimensional) curves x; : R — R4, i =1,..., N. Our goal is to
identify K (d-dimensional) cluster centers vj — representing K candidate motifs — to which
the curves are, locally, highly similar with respect to a distance d(-, ). Without loss of gener-
ality, we can assume that the domain of each vy, starts at 0; in symbols, vy : (0, c,) — R,
k=1,..., K, with unknown lengths ¢i,...,¢cx € [Cnin, Cmaz)- Then, each curve is aligned
to each cluster center vy as to minimize their distance in the interval (0, ¢x). Alignment is
performed composing each curve x; with a warping function f;,; : R — R from a class W
so that the curve portion matching the cluster center moves to the interval (0, ¢;). Here we
consider shifts W = {h: t — t + s;5 € R}, but our method can be generalized to other
warping functions commonly employed in the functional data analysis literature (see, e.g.,
Chapter 7 of Ramsay and Silverman, 2005). Because of the focus on local similarity, a
curve can belong to more than one cluster; that is, different portions of a curve can be
similar to portions of other curves. Hence, mimicking fuzzy clustering (see, e.g., Bezdek,

1981; Bezdek et al., 1984), we assign to each curve x; a probability py,; to be a member



of each cluster k. We define a membership function py : {xi,...,xy} — [0, 1] for each
k=1,...,K, with py(x;) = pg;, requiring that Zlepkyi =1foralli=1,...,N, and
that Zf\il pr; > 0 for all K = 1,..., K. Each py; corresponds to a particular shift s,
of the curve x;; namely, the one that minimizes the distance between x; and vj given all
constraints. We denote S = [s;;] € RE*N and P = [p;,] € [0, 1]5*V, where RE*Y and
[0, 1]%*¥ indicate the space of matrices of dimension K x N with elements in R and [0, 1],
respectively.

Consider the cluster center lengths ¢y, ..., cx as fixed (identification of ¢ € [¢min, Crmaz]
is discussed in the next Subsection). ProbKMA can be formulated as the following op-
timization problem: find K cluster centers vy, ..., Vg, membership probabilities P and

shifts S that minimize the generalized least-squares functional

N
In(P,S vy, ..., v ZZ Dk.i) d2 x”kl,vk) (1)

K
i=1 k=1
under the constraints p; € [0, 1], Vi, k; Zle pri = 1, Vi; and Zfil pri > 0, Vk. Here
m > 1 is a fixed parameter controlling the degree of fuzziness, and X;, ,(t) = x;(t + si)
are the shifted curves. Necessary conditions for (f’, S, Vi,....v k) to be a (local) minimizer
of (1) are that each of P, S and ¥y, ..., Vx minimizes (1) fixing all the other variables. We
prove two key results (see Section S1). The first provides an explicit solution for P given

shifts and centers. Importantly, this result holds for any distance d(-,-) and does not rely

on any regularity assumption on curves or cluster centers.

Proposition 1. FizS and vy, ..., V. Let R = {ief{l,....,N}|d(Xigs,,, Vi) >0 for all k}
and suppose that |R| > K. Then P = [Dr.i] is a global minimizer of

I (8, %1, ..., Vi) = [0,1]FN R, (2)

under the constraints Zszl ki =1, Vi and Zi]\ilpkz,i > 0, Vk if and only if

B (@ Rigenvi) "
i = | Y| et =1,...
pk,l <d2 (ii7§l’i,‘,}l) k’ Y 7K (3)

=1



for alli € R and

0, k - d(}zz’g 27{%) >0
Pri = " (4)
c€[0,1], k:d(Xis,,. Vi) =0

with Yn  prs =1, for alli ¢ R.

If the i-th curve has positive distance from all cluster centers, (3) states that its proba-
bility of belonging to cluster k is inversely proportional to the (m —1)-th root of its squared
distance from the k-th cluster center. Equation (4) tackles the extreme case, very seldom
in practice, of a curve with distance 0 from one or more cluster centers; in this case, the
probabilities are set to 0 for all clusters from which the curve has a positive distance. If a
curve has distance 0 to exactly one cluster, the constraint implies that the corresponding
probability is 1. If a curve has distance 0 to more than one cluster, the corresponding
probabilities can be arbitrarily chosen as long as the constraint is satisfied.

The second result provides a formula for vy, ..., Vg given shifts and memberships, and
depends on the distance employed. This provides an explicit solution for optimal centers

given shifts and probabilities for any distance d,(, ) defined as

di (x,v) = Zl % [1 ; o /OC (x(”)(t) — U(V)(t))th I % /OC (x’(”)(t) _ UI(V)@))th] (5)

where w, > 0 is the weight of the v component of a d-dimensional curve, indicated by
) 7 indicates the weak derivative (see, e.g., Evans, 1998, pag. 254), (0,c¢) is the domain
of v, and « € [0, 1] is a parameter that defines the relative weight of the curve’s levels and
derivatives. When a = 0, we require x; € L?(R,R?) and v;, € V;, = L*((0, ¢x), R?), where
L? is the space of square-integrable functions. In this case we obtain an L?-like distance
do(+,-) that focuses exclusively on the levels. When a > 0, we require x; € H'(R, R?) and
vi € Vi = HY((0,¢),RY), where H' is the Sobolev space of square-integrable functions,
with square-integrable first order weak derivative (see, e.g., Evans, 1998, pag. 254). The
choice of @ = 1 leads to an L2-like pseudo-distance d; (-, -) focusing on curve variations (their
slopes or trends). Finally, a € (0,1) defines a Sobolev-like distance d, (-, -) that highlights
more complex features of curve shapes, taking into account both levels and variations. Note

that no smoothness assumption is needed for the curves nor the cluster centers.
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Proposition 2. Fiz P and S. Consider the distance do (-, ), with fired a € [0,1]. Ifa =0,
assume x; € L2 (R, RY) and v;, € Vi, = L*((0,¢x),R?). Ifa > 0, assume x; € H' (R, R?) and

vi € Vi = HY((0,¢),RY). Then Vy,...,Vi are the (unique) global minimizers of

Ju(P,S,) : Vix--xVixk —R (6)
of and only iof
N
N < a.e. in (0,c), Vk. (7)
> (ra)™
i=1

When o = 1, ¥y, is defined by (7) up to an additive constant.

Equation (7) defines the k' cluster center as a weighted average of the shifted curves
in (0,cg). Weights are determined by memberships: the contribution of a curve to the
computation of v is directly proportional to its probability of belonging to cluster k.
Note that if a curve does not belong to any cluster, then the membership probabilities are
all around 1/K, hence the curve has a reduced influence on the definition of the cluster
centers. In addition, we implemented a cluster cleaning step in order to make this influence

negligible (see Subsection S2.1).

2.2 Algorithm

Propositions 1 and 2 suggest to numerically minimize (1) through an iterative procedure
that alternates: i. identification of cluster centers with equation (7), ii. curve alignment
(warping function selection), and iii. computation of membership probabilities using equa-

tions (3)-(4). We propose the following algorithm for probKMA.

Initialization Fix the number of clusters K and the cluster center lengths ¢y, ..., cx. Con-
sider an initial membership matrix P(®) such that Zszl p,(c(?g =1, Vi and ZZ]L p,(fg > 0,

Vk (non-degenerate clusters), and an initial shift matrix S

Iteration Repeat the following three steps for iter = 1,2, ..., until convergence:



(iter)

i. Identification of cluster centers. For each k, compute the k' cluster center v,

with equation (7), using the shift s,(;;ier_l) and memberships p,(ﬁer_l);

ii. Curve alignment. For each ¢ and k, align the curve x; to the new cluster center

v selecting the shift s,(;’tier) that minimizes their distance d (ii,s, v,(jter)>;

iii. Computation of membership probabilities. Compute the membership matrix

Pter) with equations (3)-(4), using v\ and the shifts s’

(iter)
)

Stopping criterion At each iteration, evaluate convergence using the Bhattacharyya dis-
tance BC between the membership matrices P and P#*¢"=1)  For each k, compute
BCy = —log (val p,(féw)p,(jéer_l)). Compute BC' as the maximum, mean, or or-

der ¢ quantile of all BC. Repeat steps i-iii until BC' reaches a given tolerance.

Remark 1. Steps i and iii are analogous to the steps of a fuzzy K-means algorithm (Bezdek
et al., 1984), or of an EM algorithm for mixture models (Dempster et al., 1977). Steps i
and ii correspond to the functional K-means with (global) alignment (Sangalli et al., 2010).

Every iteration can be written in a functional form as

(P(iter)’ S(iter)7vgiter)7 o 7V%ter)) T, (P(ite'r—l)J S(iter—1)7vgit67"—1), o 7V%ter—1))

where T,, : Y —— Y is the point-to-set map defined by i-iii, and Y the subset of
[0, XN 5 REXN % V) x ... x Vi that satisfies Zszlpm =1, Vi and Zi]\ilpm > 0, Vk.

For each initialization, the algorithm generates a sequence of iterations

{Tgter) (P(0)7 SUREONS ,vgp) }M:l - (8)

Below, we show that .J,,, is continuous and descends along (8). This is an important result,

which mimics the one in Hathaway et al. (1987) for fuzzy K-means (proof in Section S1).
Lemma 3. The functional J,, : Y — R is continuous.

Theorem 4. Consider y™ 1 € Y. Then for every y € T,,(y@=1) we have

J, (y(iter)) <J, (y(iterfl)) 7 (9)



i.e. Jpy 18 a descent functional for T,,. Moreover, J,, descends strictly along the iterations

if yiter=1 ¢ Q. where Q C Y is the solution set of y = (P,S,¥V1,...,Vk) € Y such that

g (P,é,vl,...,vK) <. (P,S,\?l,...,{/K) VP e [0, 1]K*N (10)
Zf:lpk,i =1
Zi]ilpk,i > 0;
g (P,S,w, . ,eK) <, (P,s,m, . ,vK) VS € REXN, (11)
Im <]?),S,\A’1, c ,\7[{) < Jn (f’,s,vl, c ,VK> VVk eV (12)
Vi 7é\A/'k

Remark 2. Although the previous result does not guarantee that every sequence of iter-
ations (8) converges to a minimizer of the functional J,,, it is a necessary condition for

convergence and a desirable property for the algorithm.

In the previous theoretical results and algorithm, the lengths c¢1, ..., ¢k € [Cmin, Cmaz)
of the cluster centers remain fixed. However, we seek to identify local similarities even
when the lengths of the matching curve portions are not known a priori. This problem
has been already tackled by local sequence alignment methods in bioinformatics, whose
goal is to find similar stretches of unknown lengths within a collection of nucleotide or
amino acid sequences. In this context, one of the most widely used algorithms is BLAST
(Altschul et al., 1990). BLAST starts by finding short stretches shared by the sequences,
and uses them as seeds. It then extends the seeds on both sides to construct larger local
alignments, stopping when the similarity score drops below a given threshold. Borrowing
this logic, we add a center elongation step to our algorithm. This step is performed only
when the algorithm is reaching convergence, to guarantee that we do not extend low-
quality cluster centers. We attempt elongation on both the left and the right of each center,
generating the elongated center using equation (7) on the corresponding aligned curves, first
for the interval (—deiong, ¢x) and then for the interval (0, ¢k + dejong). For elongation to be

acceptable, we require that the corresponding objective function J,, (P, S, vy,...,vk) =
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Zf\il (prs)™ d? (iz}shw Vk> decreases or that it increases less than a given threshold A, .
Note that this implies that Theorem 4 is not valid when the elongation is performed since
the objective function J,, is allowed to increase.

Further details on probKMA implementation are provided in Section S2.

3 Cluster evaluation and functional motif discovery

To evaluate a probKMA clustering, we develop a generalized silhouette index, similar to
the one used in classic clustering (Rousseeuw, 1987). Our index is defined for portions
of curves and measures how well each portion fits its own cluster. First, we dichotomize
the membership matrix P to transform it into a matrix of zeros and ones as explained in
Subsection S2.1, and we extract all the curve portions belonging to a cluster, i.e. for which
the dichotomized membership probability is equal to 1. Next, we compute the distance
d;(k) of each portion j = 1,...,J from cluster k as the mean of the distances between j
itself and all the portions of cluster k. We define the intra-cluster distance as a; = d;(k;) —
the distance of portion j from the cluster k; it belongs to — and the inter-cluster distance
as bj = mingy; d;(k) — the minimum distance of portion j from all the other clusters. The

generalized silhouette index for portion j is

bj — Q;
= —1,1].
7 max(by, ;) €L

Large values of s; indicate that j is appropriately assigned to its cluster, while low values
indicate bad assignments. In particular, negative values signify that portion j is closer to
a cluster different from the one it was assigned to. For each cluster k£, we then compute its
average silhouette index Sy considering all the portions assigned to k. This measures the
compactness of the cluster and hence its quality. Finally, the overall average silhouette index
S measures the overall quality of the clustering. Similar to classic clustering, silhouettes
for portions, clusters and overall clustering are visualized in a silhouette plot (see examples
in Figs. S27(b) and S35(c)) that facilitates their interpretation.

Like other K-means algorithms, probKMA finds a local minimum of the functional

Jm and its output heavily depends on initialization. If the goal is to locally cluster the
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curves in K groups, we repeat the algorithm using different initializations (and possibly
different initial lengths) and we select the solution with the lowest value of J,,. When K
is not known, the generalized silhouette index allows one to compare the results obtained
with different K and select the best one. If the goal is functional motif discovery, we run
probKMA multiple times with different initializations, cluster numbers, and motif initial
lengths, and form the set of candidate motifs taking the union of the solutions. We clean
this set of candidate motifs using generalized silhouette indices and number of occurrences.
We then merge very similar candidate motifs, as they may correspond to the same motif
identified by multiple runs of probKMA (Section S3). Finally, we utilize a motif search
algorithm to locate all instances of the discovered motifs in the input curves, i.e. all portions

of curve with distance lower than a given radius from each motif (Section S3).

4 Simulations

4.1 Generating 1-dimensional curves in complex scenarios

Generating curves comprising functional motifs is a non-trivial task since we require motifs
to be smoothly embedded in curves while allowing them to occur with noise. To do this,
we exploit the flexibility provided by B-splines. We consider a B-spline basis {®;}, of
order n, with equally spaced knots t1,...,t;_,.2, and define each 1-dimensional curve as
x(t) = Zle a®(t), where ¢, € R, [ = 1,..., L are coefficients to be chosen. The order
n controls smoothness and complexity of x (z is a curve of class C"™2 and a piece-wise
polynomial of degree n — 1). Higher orders provide more degrees of freedom, allowing one
to generate curves with more complex shapes, and smoother at the knots. Each ®; has
compact support — it is 0 outside an interval of length nT’, where T is the distance be-
tween two subsequent knots; this allows us to define a functional motif of length T fixing
the values of n coefficients ¢y, ;, . .., ¢m,i+n—1 and repeating them multiple times within the
same curve or across different curves. Longer motifs of length 27", 3T, ..., that may result
in more complex shapes, can be created similarly, fixing the values of n + 1,n + 2,...

subsequent coefficients. Since a single curve can embed more than one functional motif, as
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well as more than one occurrence of the same motif, we require motifs to be separated by
at least one sub-interval (¢;,t;11) as not to be artificially merged (i.e. we require at least
n background coefficients between them). Motif occurrences that are “the same”, both in
shape and level, are generated adding Gaussian noise to their coefficients: ¢ ; = cm; + €5,
€ YN (0,0%). Motif occurrences that are “the same” in shape but have different levels
are obtained adding a constant d,, to all the coefficients that define a single occurrence
(different constants for different occurrences): €y ; = Cmj + 0m + €5, €; LN (0,0?). Back-
ground coefficients ¢, € [a, b] (i.e., coeflicients not corresponding to motifs) are generated
as (chg —a) /b w Beta(0.45,0.45), creating reasonably different backgrounds for both the
curve and its derivative. With this flexible model, we can generate data in several scenarios,

varying curve and motif lengths, as well as variability, frequencies, and positions of motifs.

4.2 Functional motif discovery: varying curve length / and noise

o in motifs

This simulation study aims to demonstrate the performance of probKMA in discovering
functional motifs embedded in a set of curves and to examine the effects of increasing
curve length and the noise level comprised in motif occurrences. We consider two different
scenarios, with sets of curves embedding (1) motifs that share both shapes and levels; or
(2) motifs that share shapes but have different levels.

In scenario (1), we consider a set of 20 curves embedding two functional motifs, each
with 12 occurrences (see Fig. 2 and Figs. S3-S5). In particular, 12 curves contain only one
occurrence of a motif (6 curves for each of the two motifs), 4 curves contain two occurrences
of a motif (2 curves for each of the two motifs), 2 curves contain one occurrence of each
of the two motifs, and 2 curves contain no motif occurrences at all. We generate data
using a B-spline basis of order 3, knots at distance 10, and motifs of length 60. Coefficients
defining the two motifs are randomly generated from a Beta(0.45,0.45) distribution rescaled
to [—15,15]. We consider four different curve lengths ¢ = 200, 300, 400, 500 and four levels
of noise ¢ = 0.1,0.5,1,2, for a total of 16 simulated datasets. In order to maximize the

consistency among these datasets and thus highlight the effects of different ¢ and o values,
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we place motif occurrences within the leftmost sub-interval of length 200 of each curve
that is common to all datasets, utilizing the same motif positions and background in all 16
cases. We treat the simulated curves as known, and we sample them on a grid of points at
distance 1, so that each motif corresponds to 61 points. For each combination of ¢ and o,
we run our probKMA-based functional motif discovery with Sobolev-like distance dg 5(-, ).
We evaluate the number of motifs found, the distance between true and estimated motifs,
the estimated lengths of motifs, and the number of true and false positives. ProbKMA is
run for K = 2,3, minimum motif lengths ¢,,;,, = 40,50,60 and 20 random initializations
for each (K, ¢pmin) pair (the maximum motif length is set to 70; see Subsection S4.1 for
other parameters). The same initializations are employed for all ¢ and ¢ combinations.
Results for £ = 200 can be found in Fig. 3 and show very good performance for our
method. As expected, performance slightly declines when more noise is introduced in the
motif instances: some occurrences can be missed, and/or false positives can be included.

However, results remain satisfactory even when o = 2. Results for other curve lengths

Motif 1, o=1 Motif 2, o=1

— Motif

—— Motif
- Occurrences -

- Occurrences

Curves with motifs, o©=1

T T T
0 50 100 150 200

Figure 2: Simulation scenario (1) with ¢ =200 and ¢ = 1. (a), (b) Two functional motifs
(solid curves) and 12 aligned occurrences of each (dashed curves); (c) 20 curves embedding

occurrences of the two motifs.

14



are shown in Figs. S6-S8. They suggest the same behavior as the noise level increases and
they appear rather robust across lengths. The only effect of increasing the ratio between
background curve portions and curve portions occupied by motifs is a slight increase in
false positives, which occurs exclusively when also the noise level is high.

In scenario (2) we consider the same curves and motifs as in scenario (1), but allow
motif occurrences to have different levels (see Figs. S9-S12). In particular, a random value
dm ~ U(—10,10) is added to all the coefficients defining each motif occurrence (a different
value d,, for each occurrence). For each combination of £ and o, we run our probKMA-based

discovery with the L?-like pseudo-distance d;(-,-) to focus on curve variation. Parameters
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Figure 3: Functional motif discovery results for simulation scenario (1) with ¢ = 200 and
varying o. (a) Motif 1; (b) Motif 2. The boxplots are obtained from 10 replications at
each o value. They show the distance between true and estimated motifs (stepwise line:
distance between the true motif and the average of all motif occurrences), the estimated

length of motifs, true and false positives. In all cases, exactly 2 motifs are found.

15



are the same as in scenario (1), and detailed results are provided in Figs. S13-S16. We find
again that our method has good performance, affected (as expected) by the noise level, but
not much by the length of the curves. In some cases, especially when the curves are very
long, we actually discover motifs that were not embedded in the simulated data. Note that,
strictly speaking, these motifs are not altogether false. As one elongates the background
portions of the curves, it is possible to generate by chance a few patterns that recur often
enough to be identified by our algorithm. In our experiments, these additional motifs are
noisier and have fewer occurrences than the two motifs originally embedded in the data.
Additional simulation studies to validate the results described above and examine the
robustness of the method to the number of initializations can be found in Subsection S4.1,

in particular in Figs. S17-S22.

4.3 Comparison with time series motif discovery

We compare our probKMA-based functional motif discovery to time series motif discovery.
In particular, we consider the recent Matrix Profile (Yeh et al., 2016, 2018). This tool
discovers the top motif pairs in a time series and, for each of these pairs, provides all the
neighboring subseries, i.e. all the subseries with distance less than R from the motif pair (see
Subsection S4.2). We consider two specifications of the simulation scenarios introduced in
Subsection 4.2: the simple case of short curves and low noise level (¢ =200 and o = 0.1),
and the complex case of long curves and high noise level (¢ = 500 and ¢ = 2). Both
probKMA-based motif discovery and Matrix Profile discover the two motifs in the simple
case. However, when curves are longer and motifs noisier (complex case), Matrix Profile
fails to find Motif 1 and includes many false positives in Motif 2. When the radius is large,
it does correctly identify a small number of occurrences of Motif 1, but it also reports a
very large number of false positives (for both motifs). On the contrary, probKMA-based
motif discovery remains robust to noise level and curve length, and is able to identify both

motifs with a very small number of false positives (see Tables S1-S3).
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4.4 Comparison with non-sparse and sparse functional clustering

We perform simulation experiments to compare probKMA | meant as a clustering method
and separate from its motif discovery purpose, to other functional clustering methods: the
standard functional K-means (Tarpey and Kinateder, 2003), the K-means with (global)
alignment of Sangalli et al. (2010), and the sparse clustering technique of Floriello and
Vitelli (2017) (see details in Subsection S4.3). We consider the following scenarios: (a)
curves in the two clusters are aligned and they differ on the entire domain; (b) curves in
the two clusters are misaligned and they differ on the entire domain; (c) curves in the two
clusters differ on a portion of the domain and this portion is aligned; (d) curves in the
two clusters differ on a portion of the domain and this portion is misaligned. Running all
methods with Euclidean distance and K = 2, they all correctly classify curves in scenario
(a). K-means only works in this scenario, while K-means with (global) alignment performs
well in scenarios (a) and (b), and sparse clustering performs well in scenarios (a) and
(c). Interestingly, when the noise level is small, sparse clustering also achieves a good

performance in scenario (b). ProbKMA performs very well in all scenarios (Tables S4-S5).

5 Real data applications

ProbKMA is very flexible and it can be applied to any kind of functional data, from
any domain. As shown in the previous section, it can be employed not only to discover
functional motifs but also as a (probabilistic) local clustering method. In this section,
we provide two detailed real data applications which illustrate these two possible uses of
probKMA. An additional application to a well-known dataset in the functional clustering

literature, the Berkeley Growth Study curves, is provided in Subsection S5.1.

5.1 Local clustering of Italian Covid-19 excess mortality curves

Italy was the first European country to be hit by the Covid-19 pandemic, with the first
confirmed cases around mid-February 2020. Italian regions were hit at different times and

with different strength, and local authorities implemented different responses, especially in
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the initial stages. Comparing the pandemic evolution across regions can therefore provide
important insights on the role of underlying factors and different containment measures.
We estimate excess mortality due to Covid-19 in Italy using the mortality data (due to
all causes) from the Italian Institute of Statistics (ISTAT). The dataset contains the daily
number of deaths for 7,270 municipalities (covering about 93.5% of the Italian population)
from January 1% to April 30", for the years 2015-2020. We aggregate data by region
and we compute the excess mortality rate curves as the daily difference between 2020
deaths and average deaths in the period 2015-2019, divided by the population of the con-
sidered municipalities (see Subsection S5.2). In order to focus on the Covid-19 period, we
only consider data starting from February 16'*. To reduce noise, we smooth the curves
using B-spline smoothing (cubic splines, knots at each day, roughness penalty on the sec-
ond derivative, and smoothing parameter chosen by average generalized cross-validation).
Smoothed curves are shown in Fig. 4(a), while raw data are in Fig. S29.

We cluster the 20 Italian regions according to their excess mortality rate curves to
assess if some regions are sharing similar patterns (see also Boschi et al., 2021). We are
interested in the entirety of the curves — possibly excluding the extremes of their domains
— but we allow shifts in their alignment to take into consideration possible differences in
the time when the (shared) patterns began in each region. We employ probKMA as a local
clustering method, with L2-like distance dy(,-) and cluster centers of fixed length ¢ = 65
days (hence allowing for a maximum shift of 10 days). Fig. 4(b)-(c) shows probKMA results
for K = 2, when assigning each curve to the cluster with highest membership probability.
Cluster 2 contains the regions (mainly located in the north of Italy) where Covid-19 hit
the hardest. Lombardia is the region with earliest Covid-19 related deaths, followed by
Emilia Romagna, Marche, Liguria, Piemonte and Trento/Bolzano, and last Valle d’Aosta
(with a delay of 7 days). Cluster 1 contains the regions with milder epidemic patterns.
Interestingly, Veneto is placed in Cluster 1 despite being the first region, together with
Lombardia, to report Covid-19 cases. This suggests that Veneto successfully managed to
flatten the curve with its early mass testing and contact tracing response (Mugnai and

Bilato, 2020). In contrast, the pattern in Lombardia is so stark that it does not seem to fit
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Figure 4: Covid-19 excess mortality curves and probKMA results. (a) Smoothed curves.
Vertical solid lines represent national lockdown (March 9%*) and closure of all non-essential
economic activities (March 23); (b) Cluster centers (thick curves) with aligned portions of

curves; (c¢) Alignment between portions of curves within clusters (start day of each portion).

properly even in Cluster 1 and shows a large distance from the cluster center (Fig. S30).
Indeed, repeating the clustering with K = 3, Lombardia is placed in a cluster of its own,

while the other two clusters and the alignments within them do not change (see Fig. S31).

5.2 Motif discovery in mutagenesis data

To fully illustrate the proposed method in its motif discovery purpose, we apply it to a
mutagenesis dataset adapted from Kuruppumullage Don et al. (2013) that we provide at

https://github.com/marziacremona/mutagenesis_data. Mutagenesis comprises all the
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processes by which mutations are generated in DNA| it is one of the major evolution-
ary forces and is central to causing many human diseases (e.g. cancer). Understanding
mutagenesis and how it is influenced by the genomic landscape is key to shedding light
on genome dynamics (Makova and Hardison, 2015). Kuruppumullage Don et al. (2013)
estimated different types of neutral (i.e. not affected by selection) mutation rates in non-
overlapping windows along the human genome comparing it with primates, and employed
Hidden Markov Models to define six divergence states and segment the genome accord-
ingly. One of the states is of particular interest: it comprises hot regions with very high
rates for substitutions, small insertions, and small deletions, which are associated with high
GC (guanine-cytosine) content, early replication timing, and open chromatin. Since these
results were obtained at a rather large scale (1-Mb windows), investigating rates at a finer
resolution within the hot regions may reveal more specific trends and patterns of varia-
tion. Note that, in general, we could aim at discovering 3-dimensional motifs, i.e. joint
patterns of substitutions, insertions, and deletions. However, for simplicity, we consider
only 1-dimensional substitution rate curves. Estimating high-resolution substitution rates
in 1-kb windows within each hot region (with the same pipeline as in Kuruppumullage Don
et al., 2013, see Subsection S5.3 and Fig. S32), we generate a dataset of 43 curves, varying
in length from 1 Mb (corresponding to a grid of 1,000 points) to 22 Mb (22,000 points).
The curves are very noisy and contain several missing or inaccurate values since in many
1-kb windows the information needed to estimate rates is scarce (see Fig. S33). In partic-
ular, substitution rates can be reliably estimated only in 60% of the 1-kb windows. After
pre-processing with stochastic regression imputation and local smoothing, missing values
are reduced to 17% of the windows (see Subsection S5.3).

We employ our probKMA-based functional motif discovery on the 43 curves using the
Sobolev-like distance J0.5(-, -) (the generalized version which can accommodate large gaps;
see Subsection S2.2). We look for motifs with minimum lengths ¢,,;, = 40, 50, 60, 70 (max-
imum length ¢,,,, = 150), and we run probKMA for K = 2,3,4,5 using 10 random ini-
tialization for each (K, ¢i,) pair. We employ our generalized silhouette index to evaluate

each probKMA run and to filter the set of candidate motifs, and we select motif-specific
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Table 1: ProbKMA-based functional motif discovery in substitution rate curves. For each

motif found, we report the number of occurrences and their mean distance from the motif.

Motif 1 2 3 4 ) 6 7 8 9 10 11 12 13

Number 19 12 27 37 63 12 72 47 14 11 9 8 6
Mean dist 1.9 19 35 51 65 3.0 87 74 52 30 55 185 17.0

radii based on probKMA results (see details in Subsection S5.3). We identify 13 functional
motifs that differ substantially in length (40 to 104 kb), levels and shapes (see Fig. 5(a)).
The motifs also differ in frequency (i.e. number of occurrences in the data) and level of
variability (see Table 1). This highlights the advantage of employing a motif discovery
methodology able to learn motif-specific length, frequency, and variability from the data.
At least four of the motifs found are of biological interest: Motif 12 corresponds to eight
long sub-regions (about 100 kb) with extremely high substitution rate (an elevation of 10%
to 20% relative to the mean level across all hot regions, which is already elevated in com-
parison to the genome at large). Motif 4 and Motif 8 also present very high substitution
rate and opposite patterns. In Motif 4, rate is about 10% above the overall hot regions
mean for the initial ~20 kb, and then decrease. In Motif 8 rate increases and then stabilizes
at about 10% above the mean for ~20 kb. The two motifs have similar variability and are
both very frequent (37 and 47 occurrences, respectively). Finally, Motif 13 corresponds to
six long sub-regions with a substitution rate 20-30% below the mean. These portions of
the hot regions are in fact not hot; substitutions rate is similar to that of the rest of the
genome. To investigate the genomic landscape of the motifs found, we consider a set of
35 genomic features measured in each of the 1-kb windows constituting the hot regions.
These features represent biological contexts that have an interplay with mutagenesis, such
as DNA conformation, DNA sequence, replication, recombination, chromatin openness and
modifications (see Table S6). We then compare, independently for each genomic feature
and each motif, the mean of the measurements in motif occurrences with the mean across
all hot regions. We perform a simulation-based two-sided test for mean difference, where
the empirical null distribution is obtained from 1000 datasets generated by randomly re-

locating motif occurrences within the set of curves. Fig. 5(b) shows that each motif has a
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Figure 5: ProbKMA-based functional motif discovery in substitution rate curves. (a) Mo-
tifs found, plotted as percent changes with respect to the mean substitution rate across
all hot regions; (b) Genomic landscape of the motifs, with color intensity proportional
to the significance (—log;(p)) of a mean difference two-sided test contrasting motif oc-
currences and hot regions at large; red, blue, and white represent positive, negative and
non-significant (p > 0.1) differences, respectively. Rimmed columns and arrows show four

particularly interesting motifs.

characteristic genomic landscape, which helps in its biological interpretation. For example,
occurrences of Motif 13 are enriched in exons and conserved elements compared to hot

regions in general; their lowered substitution rate may correlate with such enrichments.

6 Discussion

This article, for the first time to the best of our knowledge, tackles the problem of func-
tional motif discovery from a statistical perspective. We proposed probKMA for discovering
candidate motifs in a set of curves, incorporating ideas from functional data analysis, bioin-
formatics and fuzzy clustering. In addition, we proposed a generalized silhouette index to
evaluate probKMA results, and implemented a post-processing for merging candidate mo-
tifs and searching motif occurrences along the curves. Although many alternative strategies

can be employed in post-processing, each with pros and cons, results on simulated and real
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data suggest that our implementation is effective in a range of scenarios.

ProbKMA employs a flexible definition of curve similarity, which incorporates both lev-
els and derivatives. In addition, similarity is defined locally, in a way that tolerates large
gaps in the curves. This broadens the application scope of our methodology. ProbKMA
can also be applied to multivariate curves and does not require the user to specify the exact
motif lengths or the motif variability levels at the outset. These are learned from the data
— the user only needs to specify the minimum and the maximum lengths of the motifs to
discover — substantially improving performance with respect to approaches where lengths
and/or radii are fixed. Real data applications usually require some pre-processing steps
— such as smoothing to estimate the curves from discretely observed data — which might
artificially introduce “false” motifs in the curves (see, e.g., Subsection S5.3). As a conse-
quence, the user must carefully select minimum motif lengths which are compatible with
the pre-processing, in particular with the choice of smoothing parameters. The minimum
motif length ought to be larger than the length of potential artificially-introduced motifs
which, intuitively, is larger the more smoothing has been applied to the data.

In our experience, motif discovery with probKMA can fail when motifs are too similar
to one another or when they are too similar to background portions of the curves. This
can happen by chance when motifs are very noisy. Relatedly, simulations show that, when
motifs are very noisy and/or dispersed in very long curves, our method can identify motifs
that were not intentionally introduced in the data, but rather randomly created when
generating background portions of the curves. In a way, these additional motifs may be
considered as unintentional and yet true (as opposed to false) positives; they do recur in
the curves in a way that is detectable by the algorithm. Nevertheless, in our simulations
they are noisier and have fewer occurrences. This observation underscores the need for
further work addressing the statistical significance of the motifs. The flexible model that
we introduced to generate simulation data may play an important role in this context,
providing a way to estimate the likelihood of discovering motifs in background curves.

We used a deliberately general, data-driven and non-parametric notion of functional

motif — in line with those used in, e.g., the bioinformatics and data mining literature
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(Bailey et al., 2006; Lin et al., 2002). Albeit beyond the scope of this article, it would be
of utmost interest to formulate a parametric definition of functional motif and develop a
rigorous statistical theory for its estimation.

Separately from its motif discovery purpose, probKMA can also be employed for proba-
bilistic clustering of misaligned functional data based on local similarities. In this respect,
it also represents a generalization of sparse clustering procedures recently proposed in func-
tional data analysis (Fraiman et al., 2016; Floriello and Vitelli, 2017). In the limit, when the
minimum motif length is close to the length of the curves under consideration, probKMA

becomes a probabilistic version of K-means with (global) alignment (Sangalli et al., 2010).

Supplementary material

Supplementary material includes proofs, additional methods and results. An R implementa-

tion (with examples) is available at https://github.com/marziacremona/ProbKMA-FMD.
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S1 Proofs

Proof of Proposition 1. We start considering the minimization of the functional (2) ignoring
the constraint Zi]\;pk,i > 0 for all k. The membership probabilities p; = [p1,, ..., DKl

related to different curves x; vary independently and

N K
. N A A . m 32/~ N
min = J,(P,S,vy,...,Vg) = E min g (Pri)"d" (X, Vi)
Pr,i€[0,1] = Pk,i>0 =
25:11716,7;:1 25:11%,1':1

Hence the optimization problem is equivalent to N independent minimizations of the func-
tions f; : RE — R, p; — Zszl (pkyi)mdz(ihgm, Vi) subject to the constraints py; > 0
and Zlepkyi =1,foranyi=1,...,N.

For i ¢ R, fn; with constraints py,; > 0 and Zle Pr; = 1 is minimized by p; if and
only if it satisfies (4). In particular, f,,;(p;) = 0.

For i € R, we employ Karush-Kuhn-Tucker conditions on f,,; with gx(p;) = —pr; <0
for all k and h(p;) = Zszl pri — 1 = 0. Regularity conditions are satisfied (fi,:, gr and
h are continuously differentiable, g and h are affine functions) and the Lagrangian as-
sociated to the optimization problem is given by L£(ps A\ ) = fumi(Pi) — Sorey NePrs +
1 (Zszl Dhi — 1). If p, is a constrained minimizer of f,,; then there exist constants A and

fi, with (\, i) # 0, such that the following conditions hold:

K K
me,i(pi) - Z S\kka,i + 4V (Z DPk,i — 1) =0, (Sl)
k=1 k=1 Pi=D;
Mbri=0 k=1,... K, (S2)
>0 k=1,... K. (S3)
Condition (S1) implies %(fn} — A 4 1 = 0 for each k, and hence

1

R R m—1
. e — [
P (m d2 (iz,ém ) ‘Afk) > |

From py; > 0 follows 5\k > [ for all k. Suppose there exists [ such that 5\1 > 0. Then

condition (S2) implies p;; = 0, hence N = it. For all k, we obtain 0 < \ = i < A, and

hence, from condition (S2), py; = 0. This solution is not admissible because it does not
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1

N I m—1
respect the constraint S°% ;= 1,hence A\ =0, it < 0and p;; = L ,
p Zkzl Pk.i H Pr,i (mdQ (Xi7§k,i7 Vk)

kE=1,...,K. In order to compute the value of /i we use the constraint Zszl Pri = 1,
obtaining

R N P A I

Pk,i = ;(m> =1,..., K.
To show that the previous equation is also sufficient for p; to be a constrained minimizer
of fmi, we observe that f,,;, gr and h are twice continuously differentiable and we consider
2L i & Lom.i

O ] of the Lagrangian. For [ # k we have -—=* = 0, while

the Hessian matrix H, = [ OPL.iPk
K

for [ = k we have %’;’:(pi, A ) = m(m — 1)(pr;)™2d* (X;5,,, V). The diagonal matrix
H/ is a positive definite matrix in the point (p;, ;\, ft) that satisfies the first-order Karush-
Kuhn-Tucker conditions (since m > 1 and py,; > 0), hence p; is a strict local minimizer of
fm,’i-

The set {pi eR" |pe; €10,1], Dy P = 1} is convex and the function f,, ; is strictly
convex (since m > 1 and d(X;z, ,, Vx)) > 0 for all k), hence the local minimizer p; is actually
the unique global minimizer of f,, ;.

Finally, the hypothesis |R| > K guarantees that the solution P defined by (3)-(4) satisfy
the constraint Zfilﬁ;ﬂ > (0 for all %. H

Proof of Proposition 2. Since the contribution of each cluster k to the functional (6) is

independent of the contributions of other clusters, we have

K
min J,,(P,S,vy,...,vg) = g min
v .,V

Vi, ,VEK

> ()™ (Ris,., Vi)

Hence we can solve K independent optimization problems. In particular, for each cluster &
we minimize g, @ Vi — R, v — Zf\il (D)™ d% (Xis, ., Vi) Let vy, ¢ € V fixed and
define g : R — R, that maps u — g i (Vi +up) = Son | (Prs)™d? (Xissp Vi + ug).

The function g, has a minimum in v; = Vv, if and only if g has a minimum in v = 0. A

dgm,k

necessary condition is ¢'(0) = 0, that implies =72 (Vi + up) =0 for all p € V. For

u=0




every a € [0,1), dq(+,-) is the distance induced by the following inner product in Vj:

vl =g 30 [ [0l ond 0 + o 0] ar (s

For o = 1, (S4) satisfies all the inner product properties in Vj, with the exception that
(y,y)1 = 0 only implies y = const a.e. in (0, ¢x); di(+, ) is its induced semi-distance. Using

this notation, we obtain

N

R d . . g .
0 = Z (P, z)md_ [(Xzsk — Vi —UP, X5, — Vi — U@M}uzo
=1
N
- Z pk i Xz 8k ‘Afka iz,ékl - ‘A/'k>a
=1

—2u(>~<i7§,€,i - ‘Allm 90>oc + u2 <90a @)a] u=0
N
= 20> ()™ R, — Vi): P)a
i=1
for every ¢ € Vj. In particular, we can choose ¢ = Zf\il (Pri)™ (fczs,“ - f/k), obtaining

N

N
<Z (ﬁk,z) Xz B ’ Z pkz Xz Bk ‘A/k)>oz =0. (S5>
i=1

i=1
If o # 1, (S5) implies SN, (Prs)™ (Xisp; — Vi) =0 ae. in (0,¢;). Using the non-

degenerate clusters assumption Zfil Dri > 0 we obtain

N
Vi = = ~ a.e. in (0, cg).
> (Br)
i=1

If a =1, (S5) implies Zfil (D)™ (Xi5,, — V&) = const a.c. in (0,¢;). Hence we have

N
Z(ﬁk,l)milﬁkz
Vv = =L ~ + const a.e. in (0, cg).
> ()™
i=1

To show the sufficiency of the previous equation for v, to be a minimizer, we compute

the second-order derivative of g: ¢”"(u) = 221.]11(]5;671')’”(% ©)a. Since Zi]ilﬁkﬂ- > 0, we
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have ¢”(u) > 0. Hence u = 0 is a strict local minimizer of g and vy is a strict local
minimizer of g, .
The constraint Zf\il Pr; > 0 implies also that the function g, is strictly convex on

Vi, hence the local minimizer vy, is actually the unique global minimizer of g, . O

Proof of Lemma 3. The functions ¢ +— t + s;,, y — y™, and d are continuous. The func-
tional J,, is the sum of products of compositions of continuous functions, hence it is con-

tinuous. O

Proof of Theorem 4. Let ylter=1) = (P(“e’"_l), Siter—1), v§“”‘1), . ,V%ter_1)> €Y. We have

yiter) — (P(z’ter)7 giter). Vgiter)7 o 7V%”)) cT, (y(iter—l)) ’

(iter) (iter)
1

hence v ,..., V. are computed using equation (7). From Proposition 2, it follows

that

J. (P(iterfl), S(iterfl)’ Vgitﬂ”) o Vg?”’)) <J., (P(iterfl) S(iterfl)’ Vgiterfl)’ o ’V%ter71)> '

? Y Y

Similarly, S is selected in order to minimize the distances d (5(1-75, V,(:ter)>, SO

J (P(iterfl)7 S(iter)’ Vgiter)7 o ’V%teT)) <J. (]_D(iterfl)7 S(iter71)7 Vgiter)’ o ’V%ter)> .
Finally, P is computed using equations (3)-(4), hence from Preposition 1 we have
J (P(iter)’ S(iter)7 Vgit67)7 o 7\,%}5@7")) <J, (:P(iter—l)7 S(iter)) Vgiter), o 7V%ter)) .

Combining the previous three equations we obtain (9).
Suppose now that y@ =1 ¢ Q. If (12) does not hold for y@ =1 then there exists

v € Vj, with vy, # v,(fterfl) such that

Jm (P(iterfl)’ S(’iterfl)’ vgiterfl)’ o ’V%ter71)> > Jm (P(iterfl)’ S(’iterfl)7 Vi, .. ;VK)



and by Proposition 2 we know that J,, (P =1 SGer=1) ) has a unique global minimizer,

hence

)

J (]_3(1’7&61"71)7 S(iterfl) Vg“”)) LV (zter ) < J, (P zterfl)’ S(iterfl)’ Vgit6T71)7 o ’V%terfl)) .
(iter) (iter—1)

If y(ter=1) satisfies (12) but not (11), then v, " = v} and there exists S € RF*V

such that

T <P(iter—1)’ S(iter—l)’ Vyt@?“)’ el (zter)) > J (P zter—l)’ S, V%iter)’ o 7V§?e7’)> )

Since SU€") minimizes d (}ZLS, V,(:ter)> we have that

T <P(iter—1), S(iter)’ V§it6r), oLV (zter > < J, <P zter—l), S(iter—l)’ Vgiter), o ’V%ter)> .

(iter) (iter—1)

Finally, if y(® 1) satisfies (11) and (12), but not (10), we have that v, "’ = v, and

there exists P € [0, 1]5*N | with Zlepk,i =1 and Zi:l Pk > 0, such that
J. <P(iter71)’ S(ii&erfl)7 V§ite7")’ LV (”37“ ) > J. (P, S(iterfl)’ Vgite?q), o ’V%tm")) )
Then from Proposition 1 and equation (11) follows that

I (P(iter)7 S(iter—l)7 Vgit@")’ o 7V§?57)> < Jn <P(iter—1)’ S(iter—l)7 V§ite7“)7 o V%ter))

< J. (]_:)(iterfl)7 S(iter)7 V§it€7")’ o ’Vg?e’“)> _

The matrix S minimizes d (iz,s, V;(fter)> and does not depend on P, so we have

T (PO, S {0 ) < g (U, St {0 ()
AS a consequence

T (]_:)(iter)7 S(itw), Vgiter)7 o (zter)) < J, (P(iter—1)7 S(itw), Vgiter)7 o ,V%ter)> '



S2 Implementation details of probKMA

S2.1 Cluster cleaning and detection of portions belonging to each

cluster

ProbKMA lacks the ability to distinguish the case of a curve x;, that matches all K cluster
centers (i.e. d(X;,, Vi) = €, Vk, with € = 0) from that of a curve x;, that does not match any
of the K cluster centers (i.e. d(X;,, vy) = M, Yk, with M > 0). In both cases equation (3)
leads to the same membership probabilities py;, = pyi, = 1/K. To overcome this issue, we
perform a cluster cleaning step when the algorithm is near convergence. The membership

matrix P is dichotomized, that is all membership probabilities are transformed into either

1
K

0 or 1. We consider the quantile ¢ 1 of order = of all distances d(fci,skﬂ., v} ); membership
probabilities py; corresponding to distances lower than ¢ 1 are set to 1, while all others are
set to 0. Note that, in this way, each curve x; is allowed not to belong to any cluster, as well
as to more than one cluster. This step distinguishes among the two extreme cases above (as
long as all or most curves are not extreme cases), leading to clean membership probabilities
Pri, = 1 and pr;, =0, k =1,..., K. Note that the order of the quantile employed in the
dichotomization can be changed based on our expectations or on the distribution of all
distances d(x;, vy). For example, if we expect many curves to belong to no cluster, we can
decrease the order of the quantile to set more memberships to 0.

This cleaning step is performed also at the end of the algorithm, to detect the curve
portions belonging to each cluster, i.e. the ones whose dichotomized membership is equal to
1, and to employ them to obtain better estimates of the cluster centers through equation (7).
These “clean” results are then employed in the computation of the generalized silhouette

index (see Section 3) and in the functional motif discovery post-processing (see Sections 3

and S3).

S2.2 Dealing with large gaps in the curves

As shown in Subsection 2.1, from a theoretical point of view the input curves are required

to satisfy only mild regularity conditions that are typical in functional data analysis. In



practice, as for almost all methods in functional data analysis, probKMA works best if
the curves are reasonably smooth. Curve smoothing can address this need and highly
improve results. Moreover, in real applications each functional datum must be created
from discrete evaluations — possibly available on datum-specific and /or irregular grids, with
some measurements missing relative to other data. This too is tackled with smoothing, and
other straightforward pre-processing steps to fill small gaps. However, in some applications
input curves present also large gaps, i.e. miss entire subregions that cannot be meaningfully
imputed by smoothing (see, for instance, our application to mutagenesis data in Section 5).
Functional methods that consider the curves globally are not appropriate for this type of
data. On the contrary, our method can tolerate large gaps because it exploits the functional
data locally. We formalize this situation allowing the " input curve x; : D; — R? to
have a domain D; C R defined as a finite union of intervals. The distance in (5) is thus

generalized as

V)=~ [ 016—24 D] Jgy 0~ o(1)" dt (S6)

(x’(”) (1) — '@ (1))* dt

where D is the domain of x. While the distance in (5) is computed on the whole interval
(0, ¢) where the cluster center v is defined, the dissimilarity in (S6) is computed only on the
portion of (0, ¢) that intersects the domain of x, and is well defined only if this intersection
is not empty, i.e. [(0,¢) N D| > 0. Based on (56), the equation to update the k-th cluster

center becomes

Z (pk,z)m ) .
4+ i=1 (07 Ck) N Di,sk i (O’Ck)mDi,gk’i (R
g )" (S7)
Z (Pr.i) H(O o
£ |(0,¢5) N Dy gy | VP00

a.e. on (0, ck)ﬂ(vazl Dlsk) Here 14 is the indicator function of the set A, and Di,s =D,—s
is the domain of the shifted curve x; ;. For a = 1, v}, is defined up to an additive constant.
Note that equations (S7) and (7) are very similar: the k™ cluster center is still a weighted

average of the shifted curves, but the contribution of a curve now depends on its domain,



in addition to its probability of belonging to cluster k. When no large gaps are present in

the input curves, (S7) reduces to (7).

S3 Functional motif discovery post-processing

Given the set of candidate motifs — obtained from multiple runs of probKMA and fil-
tered based on generalized silhouette indices and number of occurrences — we need a post-
processing to merge similar candidate motifs and locate all instances of the final set of
functional motifs (see Section 3). Merging and motif search can be tackled with many
different strategies, each with its pros and cons. To save computation, we devised imple-
mentations that take advantage of the large amount of information gained from the multiple
runs of probKMA — in particular, of the distances that have been computed between each
candidate motif and all input curves (both the ones that contain the motif, and the ones
that do not). Briefly, for merging we group similar candidate motifs benchmarking their
pairwise distance against the distances between all motifs and curves. In each group, we
select one representative motif based on its number of occurrences and the average distance
between the motif and its occurrences in the curves. If the candidate motifs in a group
have very different lengths, we can select more than one representative. This allows us to
retain both a long motif and a shorter motif — which may have a larger number of occur-
rences, or a smaller average distance. In addition, we estimate the variability within each
group of motifs, and we use it to define the radius R used in the motif search step. This
is group-specific and it allows us to map instances of each motif based on a data-driven
evaluation of its own signal-to-noise ratio.

In detail, we propose the following implementation for the post-processing.
1. Compute all pairwise distances between candidate motifs;

2. Perform hierarchical clustering with average linkage of candidate motifs, using their

pairwise distances;

3. Determine a global radius R,; based on the minimum distances between all candidate

motifs and all curves;



4. Cut the hierarchical clustering dendrogram at height 2R,;;, obtaining M groups of similar

motifs;
5. For each group m=1,..., M:

a. Determine a group-specific radius R,, based on the minimum distances between the

motifs of group m and all curves;
b. For each motif in group m

e Find the curves containing the motif, i.e. the curves with distance < R,, from

the motif;

e Approximate the number of occurrences in the curves (portions of curves with
distance < R,, from the motif), counting the number of curves containing the
motif;

e Approximate the average within-motif distance (i.e. the average distance between
the motif and all its occurrences in the curves) with the average of the minimum

distances between the motif and each of the curves containing it;

c. Select a very small number of motifs based on the approximate number of occurrences,

the approximate average within-motif distance and the motif length;

6. Find all occurrences of the selected motifs (portions of curves with distance < R,, from

the motif).

Pairwise distances between candidate motifs in step 1 are computed according to the
same distance employed by probKMA, allowing alignment between each pair of motifs but
requiring a minimum overlap, defined as a percentage of the shortest motif in each pair
(default choice 60%).

During the last iteration of probKMA algorithm (and in particular in step iii) we com-
pute the minimum distances between each motif and all curves. Moreover, the curves are
divided in two groups: the ones that contain the motif, and the ones that do not contain
it. In steps 3 and ba of the post-processing we utilize this piece of information in order to

compute the radii R,; and R, (see Fig. S1). In particular, we employ k-nearest neighbors
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to select the distance that best discriminate the group of distances between each motif and
the curves that contain it (group 1), from the group of distances between each motif and
the curves that do not contain it (group 0). This distance is selected based on the posterior
probability of the k-nearest neighbors classifier (i.e. the percentage of votes for one group).
The advantage of using a non-parametric classifier such as k-nearest neighbors is that we
do not need any assumption on the distribution of distances in the two groups. However,
it is important to observe that the resolution of the posterior depends on the number of
neighbors used (k = 1 corresponds to probability of 0 and 1, £ =2 to 0, 0.5 and 1 and so
on). In addition, the posterior probability of the k-nearest neighbors classifier can be not
decreasing: for intermediate distances between the two groups we can have a distance clas-
sified as group 0, then a distance classified as group 1, and then again a distance classified
as group 0. In order to be conservative in defining group 1, we select the smallest distance

at which the posterior probability of belonging to group 1 is smaller than a given threshold.

All candidate motifs Dendrogram of candidate motifs

o R — Curves with motif 8 ©

o~ all . . I
> —— Curves without motif
2 o
a - 8 n

g 2Ra
) et A 2
[S] T T J\:FH-& T 1 o ° . H28833 ERREER S BEREE S}
0 5 10 15 20
Distance motif-curve Candidate motifs
(a) (b)
Candidate motifs in Group 1 Candidate motifs in Group 2

o R, —— Curves with motif N R —— Curves with motif
> O — Curves without motif >, 2 — Curves without motif
@ @

o o i M

o T o T T T T 1

0 0 5 10 15 20
Distance motif-curve Distance motif-curve
(©) (d)

Figure S1: Example of post-processing, data from first simulation scenario in Subsec-
tion 4.2, [ = 200, 0 = 1. (a) Selection of a global radius R, (step 3); (b) Hierarchical
clustering dendrogram cut at height 2R,; (step 4); (c)-(d) Selection of a group-specific
radius R, in each of the two groups (step 5a).
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Figure S2: Example of post-processing, data from first simulation scenario in Subsec-
tion 4.2, [ = 200, 0 = 1. (a) Aligned candidate motifs in Group 1; (b) Alignment of
candidate motifs in Group 1; (c) Approximate average within-motif distance vs approxi-
mate number of occurrences, for motifs in Group 1 (step 5b). Circle size is proportional to
motif length. A red square indicates selected motif (step 5¢); (d)-(f) Analogous plots for

motifs in Group 2.

Regarding the selection of k, with very small k& the algorithm is very fast but give very

noisy results, while larger k create more stable results but take much more computational

time. Our default choice is k = 3 and threshold 0.5 for the posterior probability.
Computing approximate number of occurrences and approximate average within-motif

distance in step 5b allows us to avoid finding all occurrences of all motifs (i.e. all portions
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of curves with distance < R,, from each motif m) — which would be computationally
expensive. This approximation is done considering, for each motif, only one occurrence in
the curves containing it. If the motif occurs multiple times in a curve, only the occurrence
closest to the motif is considered. As a consequence, the approximate metrics represent
lower bounds of the actual metrics. Note that this approximation is good when only a small
number of curves contain multiple instances of the same motif. Our implementation lets
the user choose between the approximate metrics and the actual ones (the default choice
is approximate metrics, which is computationally lighter).

Selection of motifs in each group m (step 5¢, Fig. S2) is done maximizing the approx-
imate number of occurrences while simultaneously minimizing the approximate average
within-motif distance. In particular, we order the motifs based on the sum of their ranks
in each of the two dimensions, and we select the top one (see Figs. S2c and S2f). If other
motifs in the same group have length very different from the selected one, we can allow the
procedure to select them too (by default, we select only the top motif in each group).

Step 6 represents a motif search step, that is needed in order to locate all occurrences of
the selected motifs, i.e. all portions of curves with distance < R, from each motif (with R,,
the group-specific radius for that motif). We observe that two overlapping portions of curves
tend to be quite similar. Hence, if a portion of curve matches a particular motif, the portion
of curve that begins and ends immediately at its left /right is likely to match the same motif
too. In order to avoid counting multiple times the same motif occurrence, we require that
two occurrences of the same motif are well separated (analogously to Lin et al., 2002). In
particular, let v,,, be a selected motif that matches a curve x in two portions corresponding
to the shifts s1 < s9, i.e. d(Xs,, Vi) < Ry, and d (Xs,, Vi) < Ry,. In order to count both
occurrences, we ask that there exists a shift s € (s1, s2) such that d (X, v,,) > R,,. Among
all the s € (s;,s,) such that d (Xs, V) < Ry, with d(Xg,, Vi) > Ry, and d (Xs,, Vi) > R,

we select the shift that minimizes d (X5, vyy,).
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S4 Simulations: additional results

S4.1 Functional motif discovery: varying curve length and noise

in motifs

Here we report additional information related to simulations in Subsection 4.2.

Figs. S3-S5 show the two functional motifs, the 12 aligned occurrences of each motif,
and the 20 curves embedding occurrences of the two motifs, for curve length ¢ = 200 and
noise levels o = 0.1,0.5,2 in simulation scenario (1) (data for o = 1 are shown in Fig. 2).
Figs. S6-S8 show the performance of our probKMA-based functional motif discovery for
different levels of noise and curve lengths ¢ = 300, 400, 500 (results for curve length ¢ = 200
are shown in Fig. 3). Analogous information for simulation scenario (2) are showed in
Figs. S9-516.

In simulation scenario (1), we employ Sobolev-like distance dg5(, -) to measure similar-
ities between portions of curves, while in simulation scenario (2) we use the L2-like pseudo-
distance dy(-,-) on the weak derivative. In both cases, probKMA is run for K = 2,3,
minimum motif lengths ¢,,;, = 40,50, 60, and 20 random initializations for each (K, ¢,in)
pair. The same initializations (i.e. the same initial membership matrix P(® and shift ma-
trix S(?) are employed for all £ and ¢ combinations. The weighting fuzziness parameter
is fixed to be m = 2. ProbKMA iterations are stopped when the global Bhattacharyya
distance BCpax = maxy—;, g BCj is < 1078. The maximum motif length is set to 70.
Elongation step is performed at every iteration, when BCp., < 1073; each center is elon-
gated up to 50% of its length in either directions, requiring that the relative objective
function .J,, ; increase is less than 5% (i.e. (Jmkelong — Jmk)/JImi < 0.05). Cleaning step
is performed every 50 iterations, when BCy.« < 107%. Candidate motifs that belong to
less than 5 curves, as well as the ones with an average cluster silhouette index lower than
the 90" percentile of all overall average silhouette indices, are filtered out (see Section 3).

Post-processing is performed with default values (see Section S3).
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Figure S3: Simulation scenario (1) with ¢ = 200 and ¢ = 0.1. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S4: Simulation scenario (1) with ¢ = 200 and o = 0.5. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S5: Simulation scenario (1) with ¢ = 200 and o = 2. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S6: Functional motif discovery results for simulation scenario (1) with ¢ = 300 and
various levels of . (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels
are obtained from 10 replications at each o value. In 33 cases, exactly 2 motifs are found;

in the remaining 7 cases, one additional motif is discovered.
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Figure S7: Functional motif discovery results for simulation scenario (1) with ¢ = 400 and
various levels of 0. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels are
obtained from 10 replications at each o value. For all the considered noise levels, exactly

2 motifs are found.
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Figure S8: Functional motif discovery results for simulation scenario (1) with ¢ = 500 and
various levels of . (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels
are obtained from 10 replications at each o value. In 34 cases, exactly 2 motifs are found;

in the remaining 6 cases, one additional motif is discovered.
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Figure S9: Simulation scenario (2) with ¢ = 200 and ¢ = 0.1. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S10: Simulation scenario (2) with ¢ = 200 and ¢ = 0.5. (a), (b) Two functional
motifs (black solid curves) and 12 aligned occurrences of each (red and blue dashed curves);

(¢) 20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S11: Simulation scenario (2) with ¢ = 200 and o = 1. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S12: Simulation scenario (2) with ¢ = 200 and o = 2. (a), (b) Two functional motifs
(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S13: Functional motif discovery results for simulation scenario (2) with ¢ = 200 and
various levels of 0. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels are
obtained from 10 replications at each o value. In 34 cases, exactly 2 motifs are found; in 5

cases, one additional motif is discovered; in 1 case, two additional motifs are discovered.
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Figure S14: Functional motif discovery results for simulation scenario (2) with ¢ = 300 and
various levels of 0. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels
are obtained from 10 replications at each o value. In 16 cases, exactly 2 motifs are found;
in 13 cases, one additional motif is discovered; in 11 cases, at least 2 additional motifs are

discovered.
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Figure S15: Functional motif discovery results for simulation scenario (2) with ¢ = 400 and
various levels of 0. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels
are obtained from 10 replications at each o value. In 2 cases, exactly 2 motifs are found;

in 18 cases, one additional motif is discovered; in 20 cases, at least 2 additional motifs are

discovered.
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Figure S16: Functional motif discovery results for simulation scenario (2) with ¢ = 500 and
various levels of 0. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels
are obtained from 10 replications at each o value. In 16 cases, exactly 2 motifs are found;
in 13 cases, one additional motif is discovered; in 25 cases, at least 2 additional motifs are

discovered.
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To validate the results described in Subsection 4.2 and in the previous figures, we repeat
simulations in both scenarios 10 times, considering 10 different randomly generated pairs
of motifs and re-generating the curves’ background. Fig. S17 shows aligned occurrences of
functional motifs (for curve length ¢ = 200 and level of noise ¢ = 1), for the 10 different
pairs of functional motifs and set of curves in simulation scenario (1). Summary results
of 10 replications of functional motif discovery for each of these 10 datasets are shown in
Fig. S18. Figs. S19-S20 show the corresponding plots in simulation scenario (2). In all
cases, our method shows good performance and similar behaviors as curve length and noise
level change. This is evidence that its effectiveness does not depend on the specific shapes
of the motifs embedded in the curves. Moreover, these results corroborate the observations
we previously made. When the level of noise increases, the distance between true and
estimated motifs increases, true positives decreases, and false positive increases. These
performance measures are only slightly affected by an increase in curve length (and hence
in the background /motif ratio). Neither curve length nor noise level affects the motif length,
which the method usually underestimates. Fig. S21 shows the number of motifs discovered
in the 10 replications of functional motif discovery, for the 10 simulations in both scenarios.
Curve length affects the number of motifs discovered: when the background/motif ratio

increases, our method tends to discover more than two motifs in the curves.
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Figure S17: The two functional motifs (black solid curves) and the 12 aligned occurrences
of each (red and blue dashed curves), for 10 different datasets in simulation scenario (1),

for £ =200 and o = 1.
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Figure S18: Summary of functional motif discovery results for the 10 different datasets in
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are obtained from 10 replications at each of the 10 different datasets, and both motifs (a

total of 200 observations). Outliers are not plotted, for clarity of visualization.
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Figure S19: The two functional motifs (black solid curves) and the 12 aligned occurrences
of each (red and blue dashed curves), for 10 different datasets in simulation scenario (2),

for £ =200 and o = 1.
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Figure S20: Summary of functional motif discovery results for the 10 different datasets in
simulation scenario (2). (a) Distance between true and estimated motifs; (b) Estimated
length of motifs; (¢) Number of true positives; (d) Number of false positives. The boxplots
are obtained from 10 replications at each of the 10 different datasets, and both motifs (a

total of 200 observations). Outliers are not plotted, for clarity of visualization.
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Figure S21: Number of motifs discovered by functional motif discovery method for the
10 different datasets in (a) simulation scenario (1) and (b) simulation scenario (2). The
boxplots are obtained from 10 replications at each of the 10 different datasets (a total of

100 observations). Outliers are not plotted, for clarity of visualization.
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Finally, we consider the 10 simulations for the first scenario and examine how results
change with the number of random initializations used to run probKMA for each (K c¢)
pair. To do this, we subsample the probKMA runs from the analysis already conducted,
which employed 20 random initializations, using only 5, 10, or 15 initializations for each
(K, Cmin) pair. We re-run the post-processing steps and compare results with those previ-
ously obtained with all 20 initializations. Reassuringly, our method is robust to the number
of initializations employed, and retains its good performance even when probKMA is run

only 5 times for each choice of (K, ¢;pin) (see Fig. 522).
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Figure S22: Summary of functional motif discovery results for the 10 datasets in scenario
(1), with 5, 10, 15 or 20 initializations for each (K, ¢) pair. (a) Distance between true and
estimated motifs; (b) Estimated length of motifs; (¢) Number of true positives; (d) Number
of false positives. The boxplots are obtained from 10 replications at each of the 10 different

datasets, both motifs and all curve lengths (a total of 800 observations). Outliers are not

plotted, for clarity of visualization.
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S4.2 Comparison with time series motif discovery

Here we report additional information related to the comparison of our probKMA-based
functional motif discovery to time series motif discovery (Matrix Profile), discussed in
Subsection 4.3.

The definition of a motif in time series is different from the one we employ for functional
data. While our functional motifs recur across a set of curves, and possibly within individual
curves in the set, time series motifs are defined as recurring within a single time series,
usually starting from pairs of highly similar subseries. In particular, given a time series, a
motif length ¢, and a radius R, Lin et al. (2002) define the most significant motif 1-motif as
the subsequence of length ¢ that has the highest count of matches, i.e. of pieces in the time
series with a distance less than R. Mueen et al. (2009) defines the most basic variant of
l-motif pair as the most similar pair of pieces of length ¢ in a time series. Yeh et al. (2016,
2018) propose an algorithm, called Matrix Profile, to retrieve the nearest neighbor of every
subsequence of length ¢. This information is used to select the top motif pairs in the time
series. For each motif pair, all neighbors within distance R (i.e. all motif pair matches)
can then be retrieved. It must be noted that available time series motif discovery tools
are not statistical in nature and they do not estimate the level of noise of each motif. The
user needs to provide one, and usually only one, motif radius R as input to the discovery
procedure. On the contrary, probKMA-based discovery learns an appropriate radius for
each motif from the data.

We compare our probKMA-based functional motif discovery to Matrix Profile, as im-
plemented by the algorithm SCRIMP that is available online at http://www.cs.ucr.edu/
~eamonn/MatrixProfile.html. We employ a slightly modified version of this code, in
which the radius R is provided as input by the user (the original code fixes R = 1) and the
tool provides as output a maximum of 100 neighbors for each of the top 3 motif pairs found
(the original code only provides a maximum of 10 neighbors). The distance employed is
the z-normalized Euclidean distance, which is defined as the Euclidean distance between

standardized subsequence and corresponds to a correlation distance between subsequences:

d(T,Q) = v/2¢ (1 — cor(T, Q)), with ¢ the length of T and Q.
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We consider the two simulation scenarios introduced in Subsection 4.2, focusing on two
specifications: the simple case of short curves and low noise level (¢ = 200 and o = 0.1), and
the complex case of long curves and high noise level (¢ = 500 and o = 2). For probKMA-
based discovery, we use the same parameters as in Subsection 4.2 (K = 2,3, minimum
motif lengths ¢,,;,¢ = 40,50, 60, and 20 random initializations for each (K, ¢pp,)). We run
Matrix Profile on one time series obtained by concatenating the 20 curves one after the
other and using different choices of radius (from R = 1 to R = 150). Since the tool requires
also the motif length as input, we use the true motif length ¢ = 60 (a newer implementation
of Matrix Profile, introduced in Linardi et al., 2018, can find all motif pairs in a given range
of lengths).

Table S1 reports results for simulation scenario (1), discussed in Subsection 4.3. Table S2
shows the results for an additional simulation in scenario (1), using motifs in Fig. S17(s)-
(t), while Table S3 reports results of the comparison between probKMA-based functional
motif discovery and Matrix Profile, for scenario (2). The results are similar to the ones
in Table S1: Matrix Profile works very well in the simple case (¢ = 200, ¢ = 0.1), but
in the complex case (¢ = 500, 0 = 2) it fails to recognize one motif, while at the same
time it includes many false positives; probKMA-based functional motif discovery achieve
a good performance in both cases. In addition, we observe how the choice of the radius R
is of utmost importance in Matrix Profile: if the radius is too small, not all occurrences
are found, while if it is too large many false positives might be included. Importantly, the
optimal value for the radius depends not only on motif length and on the level of noise, but
also on the shapes of the motifs. Indeed, data employed in Tables S1 and S2 have exactly
the same motif length and noise level, but the optimal values of radius in the simple case

(¢ =200, 0 =0.1) are R =30 and R = 90, respectively.

42



Table S1: Comparison of probKMA-based functional motif discovery and Matrix Profile on

simulation scenario (1) (TP: true positives; FP: false positives). For probKMA, we report

median results (and median absolute deviations) across 10 repeated simulations.

probKMA Matrix Profile
Radius — 1 10 20 30 40 50 70 90 110 130 150
TP 12 (0) 2 6 8 12 12 12 12 12 12 12 12
Motif 1
£ =200 FP 0 (0) o 0 0o o o o0 0 O 0 0 0
oc=0.1 TP 12 (0) 2 7 10 12 12 12 12 12 12 12 12
Motif 2
FP 0 (0) o 0 0 o o o0 0 O 0 0 0
™ 11(07) 0 0 0O O O 0 0 1 2 2 2
Motif 1
£ =500 FP 2 (1.5) 2 5 8 8 9 10 13 17 19 24 27
o=2 TP 12 (0) 2 2 12 12 12 12 12 10 12 12
Motif 2
FP 1(1.5) 0 1 8 16 23 34 51 71 82 88

Table S2: Comparison of probKMA-based functional motif discovery and Matrix Profile

on an additional simulation in scenario (1) using motifs in Fig. S17(s)-(t) (TP: true posi-

tives; FP: false positives). For probKMA, we report median results (and median absolute

deviations) across 10 repeated simulations.

probKMA Matrix Profile
Radius — 1 10 20 30 40 50 70 90 110 130 150
TP 12 (0) 0 4 6 6 6 6 6 12 12 12 12
Motif 1
£ =200 FP 0 (0) 2 0 0 0O 0O 0 0 O 0 0 0
oc=0.1 TP 12 (0) 2 9 12 12 12 12 12 12 12 12 12
Motif 2
FP 0 (0) o 0 0o 0 O O 0 o 0 0 0
TP 11507 0 0 0 0 O O 1 1 1 0 1
Motif 1
£ =500 FP 0 (0) 2 2 4 4 5 8 10 17 22 27 35
o=2 TP 10 (1.5) 2 4 7 8 8 12 12 7 7 12 12
Motif 2
FP 1 (0) 0 O 1 2 2 5 13 12 13 29 34
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Table S3: Comparison of probKMA-based functional motif discovery and Matrix Profile on

simulation scenario (2) (TP: true positives; FP: false positives). For probKMA, we report

median results (and median absolute deviations) across 10 repeated simulations.

probKMA Matrix Profile
Radius — 1 10 20 30 40 50 70 90 110 130 150
TP 12 (0) 2 6 8 12 12 12 12 12 12 12 12
Motif 1
¢ =200 FP 0 (0) o 0o 0 o O 0 0 O 0 0 0
oc=0.1 TP 12 (0) 2 7 11 12 12 12 12 12 12 12 12
Motif 2
FP 1 (0) 0o 06 0 o O O 0 O 0 0 0
TP 12 (0) 0 0 0 O 0 0 O 2 3 6
Motif 1
¢ =500 FP 0 (0) 2 2 2 4 6 8 16 27 37 53 68
oc=2 TP 12 (0) 2 4 8 11 11 11 12 12 12 12 12
Motif 2
FP 2 (0) o o o 1 2 7 13 18 25 29 36
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S4.3 Comparison with non-sparse and sparse functional cluster-

ing methods

We consider 2 clusters and generate 9 curves for each cluster, in the following four different
scenarios (depicted in Fig. S523): (a) curves in the two clusters are aligned and they differ
on the entire domain; (b) curves in the two clusters are misaligned and they differ on the
entire domain; (c) curves in the two clusters differ on a portion of the domain and this
portion is aligned; (d) curves in the two clusters differ on a portion of the domain and this
portion is misaligned. These four scenarios can be seen as special cases of the more general
functional motif discovery problem, in which each curve contains exactly one motif and
(a) curves are themselves the entire aligned motifs; (b) curves are themselves the entire
misaligned motifs; (c) curves contain aligned motifs; (d) curves contain misaligned motifs.

In each scenario, we run the standard functional K-means (Tarpey and Kinateder,
2003), the K-means with (global) alignment of Sangalli et al. (2010), the sparse clustering
technique of Floriello and Vitelli (2017), and probKMA with Euclidean distance and K = 2.
For the sparse clustering method, we also take the sparsity parameter (i.e. the minimum
length of the unselected part of the domain) as known, setting it to the curve length minus
the motif length. We set the motif length parameter in probKMA in the same way. In K-
means with (global) alignment and probKMA, we consider only shift alignments. We then
evaluate clustering results by means of a classification error rate (1 minus the Rand index;
Rand, 1971) that is equal to 0 if every curve is correctly classified and (since K = 2) is equal
to 0.5 if the classification is as good as random. Since probKMA produces a probabilistic
clustering, we compute the classification error rate after assigning each curve to the cluster

with highest membership probability. Results are shown in Table S4.
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Figure S23: Simulated data for the comparison of functional clustering methods, o = 2.
(a) Aligned motifs; (b) Misaligned motifs; (¢) Curves with aligned motifs; (d) Curves with
misaligned motifs. The motifs are shown in red and blue and the reminder of the curves

in black.
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Table S4: Comparison of probKMA with functional clustering methods in the four simu-

lation scenarios of Fig. S23. We report means (and standard deviations) of classification

error rates across 10 repetitions.

Scenario  K-means K-means with (global) alignment sparse clustering  probKMA

(a)  0(0) 0 (0) 0 (0) 0 (0)

(b) 0.26 (0.13) 0.12 (0.19) 0.08 (0.18) 0 (0)
o=01 (c) 0.29 (0.22) 0.44 (0.08) 0.05 (0.17) 0.04 (0.07)
(d) 0.49 (0.05) 0.49 (0.06) 0.52 (0) 0.01 (0.04)

(a)  0(0) 0 (0) 0 (0) 0 (0)

(b) 0.26 (0.18) 0.16 (0.21) 0.42 (0) 0 (0)
=2 ) 0.28 (0.23) 0.38 (0.17) 0.11 (0.22)  0.04 (0.10)
(d) 0.44 (0.07) 0.49 (0.05) 0.53 (0.01) 0.06 (0.08)
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Fig. S24 and Table S5 show an additional comparison between standard functional
K-means, K-means with (global) alignment, sparse clustering and probKMA, in four sce-
narios: (a) curves in the two clusters are aligned and they differ on the entire domain; (b)
curves in the two clusters are misaligned and they differ on the entire domain; (c) curves
in the two clusters differ on a portion of the domain and this portion is aligned; (d) curves

in the two clusters differ on a portion of the domain and this portion is misaligned.
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Figure S24: Data for an additional comparison of functional clustering methods, o = 2.
(a) Aligned motifs; (b) Misaligned motifs; (c) Curves with aligned motifs within them; (d)
Curves with misaligned motifs within them. When the curves are broader than the motifs
defining the two clusters, the motifs are shown in red and blue and the reminder of the

curves in black.
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Table S5: Additional comparison of probKMA with non-sparse and sparse functional clus-

tering methods in the four simulation scenarios of Fig. S24. We report means (and standard

deviations) of classification error rates across 10 repetitions.

Scenario  K-means K-means with (global) alignment sparse clustering  probKMA

(a)  0(0) 0 (0) 0 (0) 0 (0)

(b)  0.11 (0) 0.08 (0.15) 0.11 (0) 0 (0)
=01 ) 0.28 (0.14) 0.40 (0.19) 0.14 (0.22)  0.08 (0.10)
(d) 0.48 (0.07) 0.48 (0.07) 0.50 (0) 0.13 (0.11)

(a)  0(0) 0 (0) 0 (0) 0 (0)

(b)  0.11 (0) 0.12 (0.21) 0.11 (0) 0 (0)
=2 ) 0.43 (0.10) 0.35 (0.15) 0.19 (0.24)  0.12 (0.10)
(d) 0.46 (0.08) 0.42 (0.09) 0.46 (0.05) 0.09 (0.10)

50



S5 Real data applications: additional results

S5.1 Global and local clustering of Berkeley growth curves

The Berkeley Growth Study (provided by the R package fda) consists of the heights of 39
boys and 54 girls from age 1 to 18. We estimate height curves and their derivatives (growth
velocity curves) using monotone B-spline smoothing with order 6, knots at observed ages,
roughness penalty on third derivative, and A = 1/4/10, as suggested in the Subsection 5.2.5
of Ramsay et al. (2009). After smoothing, each curve is evaluated at 101 equidistant times
between 1 and 18 years, in order to obtain 100 sub-intervals (the age difference between
consecutive time points is exactly 0.17 years). Fig. S25 shows the resulting smoothed height

and growth velocity curves.

Growth curves Growth velocity
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(a) (b)
Figure S25: Smoothed Berkeley Growth Study curves, color-coded according to the children
sex (39 boys in cyan and 54 girls in magenta). (a) Height curves; (b) Growth velocity curves

(height curve derivatives).

First, we perform a global probabilistic K-means running probKMA with K = 2 and L?-
like pseudo-distance d; (-, -) between the entire curves (no alignment permitted). Note that
this is equivalent to employing the L?-like distance dy(-, -) on the growth velocity curves. We
run probKMA 10 times, using different random initializations. Notably, all 10 initializations

produced the same results (the differences are in the order of 1077 for the functional J,,,
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Figure S26: Results of global probabilistic K-means (with K = 2) for the Berkeley Growth
curves, color-coded based on the membership to Cluster 1 (from red when it is 0 to blue
when it is 1). (a) Growth curves; (b) Growth velocities; (¢) Growth velocities for curves
whose membership is uncertain (probabilistic membership between 0.4 and 0.6); (d) Prob-

abilistic memberships for boys and girls. Dots show misclassified children.

and maximum 10~* for the probabilistic memberships). Results are shown in Fig. S26: the
clustering is based on the timing of the main pubertal growth spurt, that generally happens
in advance for girls. Children with uncertain memberships (Fig. S26(c)) have intermediate

pubertal growth spurt timing. Assigning each curve to the cluster with highest membership
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probability, we obtain clusters that differ on the main pubertal growth spurt timing and
roughly corresponds to boys and girls (boys grow later), with 11 misclassified children (2
boys and 9 girls, classification error rate 0.21, Fig. S26(d)). Notably, classic functional K-
means with K = 2 and Euclidean distance between height curve derivatives (i.e., Euclidean
distance between growth velocity curves) produces exactly the same clusters. However,
our probabilistic approach permits, in addition, to visualize curves whose membership is

uncertain and to check the probabilistic memberships of misclassified children.
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Figure S27: Cluster assignments in local probabilistic clustering with portions of length
8.5 years, based on the median distance between curve portions and cluster centers. (a)
Histogram of distances between curve portions and cluster centers. The red vertical bar
indicates the median distance used for probabilistic membership dicotomization; (b) Sil-

houette plot of the resulting clustering.

To fully exploit probKMA and gain additional insights, we perform a second analysis
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Figure S28: Local clustering results for Berkeley curves. (a) Growth velocity curves, with
clustered portions of ¢ = 8.5 years color-coded based on the probabilistic membership to
Cluster 1 (from red when it is 0 to blue when it is 1); (b) Cluster centers (black) with

aligned clustered portions.

in which we cluster curves locally, using again the L%like pseudo-distance d;(-, ) between
growth velocity curves, looking for K = 2 clusters of fixed length ¢ = 51, corresponding
to 8.5 years (hence allowing for a maximum shift of 8.5 years). We run the algorithm 10
times, using different initializations, and we select the results corresponding to the minimum
value for the function J,,. We perform cluster assignment dicotomizing the probabilistic
membership matrix P based on the median of all distances d;(X;, vy), i.e., we set them to
1 when the distance between the portion of curve and the cluster center is lower than the
median distance (see Section S2 and Fig. S27). The silhouette plot of Fig. S27(b) shows
that this clustering has a good overall quality, as indicated by the high overall average
silhouette index S = 0.89 (reported at the bottom of the plot); both clusters are good,
since they both have high average silhouette index (S; = 0.89 and Sy = 0.89 for the two
clusters, respectively, as indicated on the right of the plot); finally, all generalized silhouette
indices s; are positive and rather large (as indicated by the gray bars in the plot), hence
all portions are appropriately assigned. As a result, we obtain two clusters of 50 and 43

portions, respectively. Interestingly, 32 and 25 curves belong exclusively to Cluster 1 and
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2, respectively, while 18 curves belong to both clusters (i.e., each of these 18 curves has
a portion belonging to Cluster 1 and another portion, possibly overlapping the first one,
belonging to Cluster 2); 18 curves do not belong to any cluster. Since the curves are aligned
and the pubertal growth spurt differs between boys and girls only in its timing (boys grow
later), this local clustering does not separate boys and girls. Instead, Cluster 2 captures a
particular shape of the pubertal growth spurt, which is shared by several children, while
Cluster 1 captures the decrease in growth velocity that is typical in children between 2 and

3 years of age.

S5.2 Local clustering of Italian Covid-19 excess mortality curves

We consider raw mortality data published by the Italian Institute of Statistics (ISTAT) on
June 4", 2020' and process them as explained in Subsection 5.1. Population data in the
[talian municipalities — employed to normalize the excess mortality curves in the different
Italian regions — is available from ISTAT at January 1%, 20192, Fig. S29 shows the raw
Covid-19 excess mortality rate curves for the 20 Italian regions, while Figs. S30-S31 report

additional results related to the analysis presented in Subsection 5.1.

!Available at https://www.istat.it/it/files/2020/03 /Dataset-decessi-comunali-giornalieri-e-tracciato-

record-4giugno.zip.
2Can be downloaded from IL.Stat website at http://dati.istat.it/Index.aspx (Popolazione e

famiglie/Popolazione/Popolazione residente al 1° gennaio/Tutti i comuni/2019).
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Figure S29: Raw Covid-19 excess mortality rate curves for the 20 Italian regions. Vertical
black lines represent national lock down (March 9*) and closure of all non-essential eco-

nomic activities (March 237).
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Figure S30: Distances between curve portions and cluster centers for probKMA with K = 2
and fixed length of ¢ = 65 days. (a) Distances between all curve portions and cluster centers.
The red vertical bar indicates the median distance; (b) Distances between curve portions
belonging to the two clusters (assignment based on the highest probabilistic membership)

and cluster centers.
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Figure S31: ProbKMA results with K = 3 and fixed length of ¢ = 65 days. (a) Cluster
centers (thick black curves) with aligned portions of curves; (b) Alignment between portions

of curves within each cluster (start day of each portion).
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S5.3 Motif discovery in mutagenesis data

We estimate high-resolution neutral mutation rates using the same pipeline as in Kurup-
pumullage Don et al. (2013). First, we identify neutral DNA by considering all repeats
ancestral to human and macaque (AR subgenome, see e.g. Hardison et al., 2003). In
particular, we consider the human reference genome hg19 and we select all the repeats
(interspersed repeats and low complexity DNA sequences) from RepeatMasker track (Smit
et al., 2010) using Galaxy (Blankenberg et al., 2010; Goecks et al., 2010), excluding L1PA1-
7, L1IHS, AluY (primate- or human-specific elements) and Conserved Non-Exonic Elements
(CNEESs, putative regulatory regions detected by Lowe and Haussler, 2012). In total, we
obtain 5407927 AR regions, covering ~ 43% of the entire genome. We then consider
the 47 hot regions identified by Kuruppumullage Don et al. (2013). Since these regions
are provided on the hgl8 release of the human reference genome, we use the lift-over tool
(Blankenberg et al., 2010) to convert them to hgl9. Requiring that a minimum of 90%
of the nucleotides remap to the hgl9 release, we are able to retain 43 regions — corre-
sponding to 91.5% of the initial regions. We partition these 43 regions in 1-kb windows,
and we discard the ones with less than 25% AR coverage to avoid very inaccurate rate
estimates. Afterwards, we extract multiple alignments corresponding to AR subgenome in
each 1-kb window, using the 46-way multiZ alignment available in Galaxy (Blankenberg
et al., 2011), as depicted in Fig. S32. To estimate substitution rates, we fetch pairwise
alignments of human and orangutan (ponAbe2 assembly) reference genomes, masking low
quality nucleotides within each block (in particular, we require an orangutan PHRED score
greater than 20). Next, we identify nucleotide substitutions, i.e., the number of different
nucleotides in between the aligned human and orangutan genomes. Finally, we estimate
the substitution rate in each window as the number of substitutions divided by the total
number of compared nucleotides in the window, using the Jukes-Cantor model (Jukes and
Cantor, 1969). Although we require that at least the 25% of each considered window is
covered by AR neutral subgenome, it can happen that alignments are present only in a
portion of this subgenome. In this case rate estimation can be inaccurate, since a very low

number of nucleotides corresponding to alignments are compared to compute it.
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Figure S33: Example of substitution rate curve. The red dashed step function reports the
rates estimated in 1-Mb windows by Kuruppumullage Don et al. (2013); the green curve
with points represents the high-resolution rates estimated in 1-kb windows (only accurate
values are shown); the blue curve represents the pre-processed curve, obtained after missing

data imputation and local smoothing.

The resulting 43 substitution rate curves are highly noisy, and contain several missing
or inaccurate values, due to the segmented nature of AR subgenome and of the multiple
alignments considered to estimate rates (see, e.g., the green curve with points in Fig. S33).
We assume that rates vary continuously in nearby windows along the genome, and we
propose to pre-process them with stochastic regression imputation and local smoothing,

filling small gaps while retaining large gaps (i.e. long stretches of missing values) for which
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we do not have enough information. We flag as inaccurate all rates estimated using less
than 200 nucleotides, and we fill in all gaps comprising at most 5 windows using stochastic
weighted regression imputation (see e.g. Enders, 2010). For each sequence of contiguous
windows with missing or inaccurate rates (corresponding to a gap in the curve), we fit
a weighted simple linear regression model for the rate — considering 2 neighbor windows
on each side of the gaps and weighting each observation based on the reliability of the
rate estimate (i.e., employing a weight proportional to the number of nucleotides used to
estimate the rate) — and we impute the values according to the model predictions. Next,
we add a residual noise to the imputed values, randomly sampling from the residuals of the
fitted model with probabilities proportional to their weights. Notably, the vast majority
of gaps in our data is quite small (<5 windows), hence with this missing-data imputation
pre-processing step we are able to fill 92% of the gaps, reducing missing values to 17% of
the windows (see Fig. S34). Finally, we employ local polynomials of degree 4, bandwidth
25 and Gaussian kernel on each curve to obtain a smooth functional object and compute
the derivative (see the blue curve in Fig. S33).

We employ the Sobolev-like distance J0,5(-, -) to measure similarities between pieces of

curves, requiring the length of the intersection between the domain f)zsk of each shifted
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curve and the interval (0, ¢;) where the cluster center is defined to be at least 80% of the
interval length ¢, and at least the minimum motif length ¢,,;, (see Section S2). We run
probKMA with K = 2,3,4,5 and minimum lengths ¢,,;,, = 40, 50, 60, 70, using 10 random
initializations for each (K, c¢) pair. The maximum motif length ¢, is set to 150. We note
that the choice of c¢,,;, must be compatible with the pre-processing employed to obtain
smooth curves and derivatives from discretely observed data (see also comments in the
Discussion). Indeed, at very small scales we might observe “false” motifs that are artificially
inserted in the curves through missing-data imputation and/or smoothing. In particular,
the mutagenesis curves contain artificially-introduced “noisy straight lines” of length < 5,
that are employed to fill small gaps. In addition, these curves might contain more complex
“false” motifs due to the local polynomials of degree 4 employed to smooth the data.
However, such motifs should be quite short, since a bandwidth of 25 and a Gaussian kernel
are used for local polynomials. Hence, we do not expect any “false” motif of length > 40
windows — the smallest motif length we consider. Weighting fuzziness parameter is fixed to
be m = 2, and probKMA iterations are stopped when the global Bhattacharyya distance
BChax = maxg—1, g BCj is < 1078, The elongation step is performed every 5 iterations,
when BCia.x < 1073; each center is elongated up to 50% of its length in either directions,
requiring that the increase of the relative objective function J,,  is less than 5% (i.e., that
(Jmkelong — Jmk)/Ims < 0.05). The cleaning step is performed every 50 iterations, when
BCppax < 1074

ProbKMA produces clusters of varying quality, and candidate motifs of different lengths
(see Fig. S35(a)-(c)). Candidate motifs that belong to less than 5 curves, as well as the ones
with an average cluster silhouette index lower than the 95 percentile of all overall average
silhouette indices, are filtered out (see Fig. S35(a)). As a result, a total of 54 motifs (out
of 560 candidate motifs) are retained for post-processing phase. When computing pairwise
distances between candidate motifs in the functional motif discovery post-processing (see
Section S3, step 1), we require a minimum overlap of 75% of the shortest motif in each
pair. Hierarchical clustering dendrogram is cut at height 2R,;;, where the global radius Ry

is set equal to 20 (see Section S3, steps 3-4, and Fig. S35(d)-(e)). Default values are used
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for group-specific radii R, and motif selection in each group (see Section S3). Fig. S36
shows motifs found by probKMA-based functional motif discovery and their occurrences
in the substitution rate curves, while Fig. S37 shows the genomic positions of four of the

discovered motifs.
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Figure S35: ProbKMA results for K = 2,3,4,5 and ¢,,;,, = 40,50, 60, 70, and functional
motif discovery post-processing results. (a) Average cluster silhouette index; (b) Candidate
motif length; (c) Example of silhouette plot for K = 3 and ¢,,;, = 50, showing a clustering
of doubtful quality (overall silhouette index S = 0.49), with one very good and compact
candidate motif (cluster 1, with a very high average silhouette index S; = 0.98), and two
bad candidate motifs (clusters 2 and 3, with very low average silhouette indices Sy = 0.05
and S3 = 0.43 and some bad assigned portions with negative silhouette index); (d) Selection
of the global radius R,; used to merge similar candidate motifs in the post-processing; (e)

Dendrogram for merging candidate motifs, cut at height 2R,;.
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Substitution rate motifs
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Figure S36: Results of probKMA-based functional motif discovery in substitution rate
curves. The discovered motifs are plotted in their original scale (colored thick curves),

together with all occurrences in the data (black solid curves).
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Figure S37: Genomic positions of motifs occurrences (blue) in hot regions (red). (a) Motif

4; (b) Motif 8; (c) Motif 12; (d) Motif 13.
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Table S6 reports the 35 genomic features considered in the investigation of the genomic

landscape of the discovered motifs (see Subsection 5.2 and Fig. 5(b)).

Type Reference
Chromatin structure
DNase I hypersensitive sites Signal ENCODE (H1-ESC)
RNA Polymerase I  Coverage Barski et al. (2007)
CTCF Signal ENCODE (H1-ESC)
H2AFZ Signal ENCODE (H1-ESC)
Transcription regulation
H3K27ac Signal ENCODE (H1-ESC)
H4K20mel Signal ENCODE (H1-ESC)
H3K36me3 Signal ENCODE (H1-ESC)
H3K4mel Signal ENCODE (H1-ESC)
H3K4me2 Signal ENCODE (H1-ESC)
H3K4me3 Signal ENCODE (H1-ESC)
H3K79me2 Signal ENCODE (H1-ESC)
H3K9ac Signal ENCODE (H1-ESC)
H3K9me3 Signal ENCODE (H1-ESC)
H3K27me3 Signal ENCODE (H1-ESC)
DNA methylation
5-Hydroxymethylcytosine Count Szulwach et al. (2011)
Sperm hypomethylation Count Molaro et al. (2011)
Selection
Most conserved elements Coverage UCSC Genome Browser
CpG islands Coverage UCSC Genome Browser
Exon Coverage UCSC Genome Browser
GC content Percentage Genome-wide screening
Slippage
G-quadruplexes Coverage Cer et al. (2011)
A-phased repeats Converage Cer et al. (2011)
Direct repeats Coverage Cer et al. (2011)
Inverted repeats Coverage Cer et al. (2011)
Mirror repeats Coverage Cer et al. (2011)
Z DNA motifs Coverage Cer et al. (2011)
Mononucleotides Coverage Genome-wide screening
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Transposition

DNA transposons Coverage UCSC Genome Browser
Alu Coverage UCSC Genome Browser

MIR Coverage UCSC Genome Browser

LTR elements Coverage UCSC Genome Browser

Gene expression

hESC gene expression Weighted average UCSC Genome Browser

Replication
Replication origins Count Besnard et al. (2012)
Recombination
Recombination hotspots Count Myers et al. (2008)

Table S6: List of genomic landscape features considered

in Fig. 5(b).
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