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Abstract

We develop a new method to locally cluster curves and discover functional motifs,
i.e. typical shapes that may recur several times along and across the curves capturing
important local characteristics. In order to identify these shared curve portions, our
method leverages ideas from functional data analysis (joint clustering and alignment
of curves), bioinformatics (local alignment through the extension of high similarity
seeds) and fuzzy clustering (curves belonging to more than one cluster, if they contain
more than one typical shape). It can employ various dissimilarity measures and
incorporate derivatives in the discovery process, thus exploiting complex facets of
shapes. We demonstrate the performance of our method with an extensive simulation
study, and show how it generalizes other clustering methods for functional data.
Finally, we provide real data applications to Italian Covid-19 death curves and Omics
data related to mutagenesis.
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1 Introduction

Given a set of curves, we consider the problem of discovering functional motifs inside them,

i.e. typical shapes (continuous curve portions) that may recur within each curve, and across

several curves in the set (see Fig. 1). Some of these motifs may be present in most of the

curves, but in different positions. Conversely, other motifs may characterize subgroups of

curves and thus differentiate among them based on local shape similarities. We provide

a novel method for functional motif discovery that aligns curves locally to identify their

shared continuous portions, employing different definitions of (dis)similarity. Importantly,

neither the motifs nor their number, lengths, or radii (i.e., the maximum dissimilarity

between a motif shape and a portion of curve containing it) need to be known in advance;

lengths and radii are specific to each motif.

Our motivating example is the study of mutagenesis, i.e. the processes that generate

mutations in the DNA sequence of an organism. The aim is to identify “signature shapes”

in multidimensional curves consisting of multiple types of mutation rates measured at

high resolution along the genome (see Subsection 5.2). Each of these shapes, or motifs,

represents a specific mutagenesis pattern, which recurs in a set of genomic regions and

0 50 100 150 200 250 300

−
15

0
10

t

x 1
(t

)

0 50 100 150 200

−
15

0
10

t

x 2
(t

)

0 50 100 150 200 250 300

−
15

0
10

t

x 3
(t

)

0 50 100 150 200

−
15

0
10

t

x 4
(t

)

0 50 100 150 200 250 300

−
15

0
10

t

x 5
(t

)

0 50 100 150 200

−
15

0
10

t

x 6
(t

)

Motif 1      Motif 2      Motif 3      

Figure 1: Example of curves comprising three functional motifs (dashed, dotted and dot-

dash continuous portions of curves, respectively; one curve has no motifs).
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is characterized by a certain genomic landscape. Functional motif discovery can also be

useful to study protein-DNA interactions – an area in which shape has already been shown

to carry biological information (Cremona et al., 2015). For instance, functional motifs in

the 1-dimensional curves of ChIP-seq signals could help us distinguish different protein-

DNA binding. Functional motifs are relevant in many other domains. For example, in

finance, one may be interested in detecting recurrent patterns in the time series of asset

prices related to different companies. This is an important problem in technical trading

analysis, whose rules aim at predicting price changes based on observed patterns. A related

problem is the detection of financial bubbles – which are characterized by a rapid surge

in prices, not justified by the fundamentals, followed by an unexpected crash – in data

such as stock market indices or exchange rates. Outside the “Omics” and financial fields,

detecting functional motifs in weather time series may help us understand some aspects

of climate change, while detecting functional motifs in time series generated by wearable

devices, e.g., accelerometer data, may help us characterize patterns of physical activity.

During the last two decades, the analysis of curves has received increasing attention and

interest in the statistical literature. Indeed, several functional data analysis methods have

been developed and applied in many fields (see, e.g., Ramsay and Silverman, 2005; Ferraty

and Vieu, 2006; Horváth and Kokoszka, 2012). Several algorithms have been proposed to

cluster aligned functional data (reviewed in Jacques and Preda, 2014). Since functional data

are very often misaligned, algorithms have also been proposed to simultaneously cluster and

align curves (Liu and Yang, 2009; Sangalli et al., 2010; Park and Ahn, 2017). All these

methods consider the curves globally, over their entire domain of definition. However,

in many applications, separation in groups may occur only on a portion of the domain;

this type of clustering structure might be missed by methods that consider curves in their

entirety. The multivariate counterpart of this domain selection problem is usually referred

to as feature selection and has been widely studied (see, e.g., Friedman and Meulman, 2004;

Witten and Tibshirani, 2010). In the functional framework, Fraiman et al. (2016) and

Floriello and Vitelli (2017) proposed methods to cluster curves while performing feature

(i.e. domain) selection. More recently, Vitelli (2019) integrated curve alignment in the
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sparse clustering procedure.

The problem of functional motif discovery we tackle here is more general and, to the

best of our knowledge, it has never been studied in the statistical literature. To identify

motifs, we define clusters locally on continuous portions of the misaligned curves and allow

each cluster to contain multiple portions of the same curve (i.e. multiple instances of the

same functional motif). In addition, we allow each curve to belong to zero, one, or multiple

clusters (i.e. to comprise zero, one, or multiple functional motifs). This problem is the

continuous version of sequence motif discovery, which is ubiquitous in bioinformatics and

“Omics” sciences (see, e.g., Bailey et al., 2006) and consists of searching for highly similar

patterns in a set of DNA or protein sequences. While these are discrete sequences of

symbols (4 nucleotides, or 20 amino acids), we consider curves that can attain any real

values and can be multivariate (i.e. take values in Rd). A similar problem for time series

has been addressed by the data mining community (Lin et al., 2002; Mueen et al., 2009; Yeh

et al., 2016, 2018) defining a motif as a pattern repeated multiple times within a single time

series. Available tools generally employ the Euclidean distance or the correlation between

portions of the time series. They usually require as input the length and the number of

motifs to be found, although Linardi et al. (2018) recently introduced an algorithm that

finds all motifs in a given range of lengths. Importantly, these tools require a user-specified

minimum distance within which two portions of the time series are considered the same

motif (i.e. a motif radius), and this distance is the same across motifs.

We embed the problem of functional motif discovery in a full-blown functional frame-

work, which allows us to capture complex shape characteristics by incorporating derivatives

in the discovery process. The functional framework also allows us to rigorously define vari-

ability within each motif, and to naturally reduce noise in the curves through smoothing.

Our novel method, probabilistic K-means with local alignment (probKMA), leverages ideas

from functional data analysis, bioinformatics, and fuzzy clustering in order to identify K

shared curve portions, which represent K candidate functional motifs in the set of curves

under consideration. Similar to the K-means with (global) alignment of Sangalli et al.

(2010), we simultaneously perform clustering and alignment of curves. However, we employ
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local alignment in place of their global alignment. Also, similar to BLAST-type algorithms

in bioinformatics (Altschul et al., 1990), we perform local alignments through the extension

of high similarity seeds. Finally, similar to fuzzy clustering in which points can belong to

multiple clusters (Bezdek, 1981; Bezdek et al., 1984), curves can be associated with zero,

one, or more than one cluster (if they contain zero, one, or more than one typical shape).

The article is organized as follows. In Section 2 we present probKMA’s theoretical

setting, formulate it as an optimization problem, derive necessary conditions for its solution,

and describe its algorithmic implementation. In Section 3 we discuss the evaluation of the

clusters produced and identification of the motifs discovered. In Section 4 we provide

simulation studies to evaluate probKMA and compare it to other approaches. We present

real data applications in Section 5 and provide concluding remarks in Section 6.

2 Probabilistic K-means with local alignment

2.1 Optimization problem and necessary conditions

We consider a set of N (d-dimensional) curves xi : R −→ Rd, i = 1, . . . , N . Our goal is to

identify K (d-dimensional) cluster centers vk – representing K candidate motifs – to which

the curves are, locally, highly similar with respect to a distance d(·, ·). Without loss of gener-

ality, we can assume that the domain of each vk starts at 0; in symbols, vk : (0, ck) −→ Rd,

k = 1, . . . , K, with unknown lengths c1, . . . , cK ∈ [cmin, cmax]. Then, each curve is aligned

to each cluster center vk as to minimize their distance in the interval (0, ck). Alignment is

performed composing each curve xi with a warping function hk,i : R −→ R from a class W

so that the curve portion matching the cluster center moves to the interval (0, ck). Here we

consider shifts W = {h : t 7−→ t+ s; s ∈ R}, but our method can be generalized to other

warping functions commonly employed in the functional data analysis literature (see, e.g.,

Chapter 7 of Ramsay and Silverman, 2005). Because of the focus on local similarity, a

curve can belong to more than one cluster; that is, different portions of a curve can be

similar to portions of other curves. Hence, mimicking fuzzy clustering (see, e.g., Bezdek,

1981; Bezdek et al., 1984), we assign to each curve xi a probability pk,i to be a member
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of each cluster k. We define a membership function pk : {x1, . . . ,xN} −→ [0, 1] for each

k = 1, . . . , K, with pk(xi) = pk,i, requiring that
∑K

k=1 pk,i = 1 for all i = 1, . . . , N , and

that
∑N

i=1 pk,i > 0 for all k = 1, . . . , K. Each pk,i corresponds to a particular shift sk,i

of the curve xi; namely, the one that minimizes the distance between xi and vk given all

constraints. We denote S = [sk,i] ∈ RK×N and P = [pk,i] ∈ [0, 1]K×N , where RK×N and

[0, 1]K×N indicate the space of matrices of dimension K ×N with elements in R and [0, 1],

respectively.

Consider the cluster center lengths c1, . . . , cK as fixed (identification of ck ∈ [cmin, cmax]

is discussed in the next Subsection). ProbKMA can be formulated as the following op-

timization problem: find K cluster centers v1, . . . ,vK , membership probabilities P and

shifts S that minimize the generalized least-squares functional

Jm(P,S,v1, . . . ,vK) =
N∑
i=1

K∑
k=1

(pk,i)
m d2

(
x̃i,sk,i ,vk

)
(1)

under the constraints pk,i ∈ [0, 1], ∀i, k;
∑K

k=1 pk,i = 1, ∀i; and
∑N

i=1 pk,i > 0, ∀k. Here

m > 1 is a fixed parameter controlling the degree of fuzziness, and x̃i,sk,i(t) = xi(t+ sk,i)

are the shifted curves. Necessary conditions for (P̂, Ŝ, v̂1, . . . , v̂K) to be a (local) minimizer

of (1) are that each of P̂, Ŝ and v̂1, . . . , v̂K minimizes (1) fixing all the other variables. We

prove two key results (see Section S1). The first provides an explicit solution for P̂ given

shifts and centers. Importantly, this result holds for any distance d(·, ·) and does not rely

on any regularity assumption on curves or cluster centers.

Proposition 1. Fix Ŝ and v̂1, . . . , v̂K. Let R =
{
i ∈ {1, . . . , N} | d(x̃i,ŝk,i , v̂k) > 0 for all k

}
and suppose that |R| ≥ K. Then P̂ = [p̂k,i] is a global minimizer of

Jm(·, Ŝ, v̂1, . . . , v̂K) : [0, 1]K×N −→ R, (2)

under the constraints
∑K

k=1 pk,i = 1, ∀i and
∑N

i=1 pk,i > 0, ∀k if and only if

p̂k,i =

 K∑
l=1

(
d2
(
x̃i,ŝk,i , v̂k

)
d2
(
x̃i,ŝl,i , v̂l

) ) 1
m−1

−1

k = 1, . . . , K (3)
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for all i ∈ R and

p̂k,i =

0, k : d(x̃i,ŝk,i , v̂k) > 0

∈ [0, 1], k : d(x̃i,ŝk,i , v̂k) = 0

(4)

with
∑K

k=1 p̂k,i = 1, for all i /∈ R.

If the i-th curve has positive distance from all cluster centers, (3) states that its proba-

bility of belonging to cluster k is inversely proportional to the (m−1)-th root of its squared

distance from the k-th cluster center. Equation (4) tackles the extreme case, very seldom

in practice, of a curve with distance 0 from one or more cluster centers; in this case, the

probabilities are set to 0 for all clusters from which the curve has a positive distance. If a

curve has distance 0 to exactly one cluster, the constraint implies that the corresponding

probability is 1. If a curve has distance 0 to more than one cluster, the corresponding

probabilities can be arbitrarily chosen as long as the constraint is satisfied.

The second result provides a formula for v̂1, . . . , v̂K given shifts and memberships, and

depends on the distance employed. This provides an explicit solution for optimal centers

given shifts and probabilities for any distance dα(·, ·) defined as

d2α (x,v) =
d∑

ν=1

wν

d

[1− α

c

∫ c

0

(
x(ν)(t)− v(ν)(t)

)2
dt+

α

c

∫ c

0

(
x′(ν)(t)− v′(ν)(t)

)2
dt
]

(5)

where wν > 0 is the weight of the νth component of a d-dimensional curve, indicated by

(ν), ′ indicates the weak derivative (see, e.g., Evans, 1998, pag. 254), (0, c) is the domain

of v, and α ∈ [0, 1] is a parameter that defines the relative weight of the curve’s levels and

derivatives. When α = 0, we require xi ∈ L2(R,Rd) and vk ∈ Vk = L2((0, ck),Rd), where

L2 is the space of square-integrable functions. In this case we obtain an L2-like distance

d0(·, ·) that focuses exclusively on the levels. When α > 0, we require xi ∈ H1(R,Rd) and

vk ∈ Vk = H1((0, ck),Rd), where H1 is the Sobolev space of square-integrable functions,

with square-integrable first order weak derivative (see, e.g., Evans, 1998, pag. 254). The

choice of α = 1 leads to an L2-like pseudo-distance d1(·, ·) focusing on curve variations (their

slopes or trends). Finally, α ∈ (0, 1) defines a Sobolev-like distance dα(·, ·) that highlights

more complex features of curve shapes, taking into account both levels and variations. Note

that no smoothness assumption is needed for the curves nor the cluster centers.
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Proposition 2. Fix P̂ and Ŝ. Consider the distance dα(·, ·), with fixed α ∈ [0, 1]. If α = 0,

assume xi ∈ L2(R,Rd) and vk ∈ Vk = L2((0, ck),Rd). If α > 0, assume xi ∈ H1(R,Rd) and

vk ∈ Vk = H1((0, ck),Rd). Then v̂1, . . . , v̂K are the (unique) global minimizers of

Jm(P̂, Ŝ, ·) : V1 × · · · × VK −→ R (6)

if and only if

v̂k =

N∑
i=1

(p̂k,i)
mx̃i,ŝk,i

N∑
i=1

(p̂k,i)
m

a.e. in (0, ck), ∀k. (7)

When α = 1, v̂k is defined by (7) up to an additive constant.

Equation (7) defines the kth cluster center as a weighted average of the shifted curves

in (0, ck). Weights are determined by memberships: the contribution of a curve to the

computation of v̂k is directly proportional to its probability of belonging to cluster k.

Note that if a curve does not belong to any cluster, then the membership probabilities are

all around 1/K, hence the curve has a reduced influence on the definition of the cluster

centers. In addition, we implemented a cluster cleaning step in order to make this influence

negligible (see Subsection S2.1).

2.2 Algorithm

Propositions 1 and 2 suggest to numerically minimize (1) through an iterative procedure

that alternates: i. identification of cluster centers with equation (7), ii. curve alignment

(warping function selection), and iii. computation of membership probabilities using equa-

tions (3)-(4). We propose the following algorithm for probKMA.

Initialization Fix the number of clustersK and the cluster center lengths c1, . . . , cK . Con-

sider an initial membership matrix P(0) such that
∑K

k=1 p
(0)
k,i = 1, ∀i and

∑N
i=1 p

(0)
k,i > 0,

∀k (non-degenerate clusters), and an initial shift matrix S(0);

Iteration Repeat the following three steps for iter = 1, 2, . . . , until convergence:
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i. Identification of cluster centers. For each k, compute the kth cluster center v
(iter)
k

with equation (7), using the shift s
(iter−1)
k,i and memberships p

(iter−1)
k,i ;

ii. Curve alignment. For each i and k, align the curve xi to the new cluster center

v
(iter)
k , selecting the shift s

(iter)
k,i that minimizes their distance d

(
x̃i,s,v

(iter)
k

)
;

iii. Computation of membership probabilities. Compute the membership matrix

P(iter) with equations (3)-(4), using v
(iter)
k and the shifts s

(iter)
k,i .

Stopping criterion At each iteration, evaluate convergence using the Bhattacharyya dis-

tance BC between the membership matrices P(iter) and P(iter−1). For each k, compute

BCk = − log

(∑N
i=1

√
p
(iter)
k,i p

(iter−1)
k,i

)
. Compute BC as the maximum, mean, or or-

der q quantile of all BCk. Repeat steps i-iii until BC reaches a given tolerance.

Remark 1. Steps i and iii are analogous to the steps of a fuzzy K-means algorithm (Bezdek

et al., 1984), or of an EM algorithm for mixture models (Dempster et al., 1977). Steps i

and ii correspond to the functional K-means with (global) alignment (Sangalli et al., 2010).

Every iteration can be written in a functional form as(
P(iter),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
∈ Tm

(
P(iter−1),S(iter−1),v

(iter−1)
1 , . . . ,v

(iter−1)
K

)
where Tm : Y −→ Y is the point-to-set map defined by i-iii, and Y the subset of

[0, 1]K×N × RK×N × V1 × . . .× VK that satisfies
∑K

k=1 pk,i = 1, ∀i and
∑N

i=1 pk,i > 0, ∀k.

For each initialization, the algorithm generates a sequence of iterations{
T (iter)
m

(
P(0),S(0),v

(0)
1 , . . . ,v

(0)
K

)}
iter=1,2,...

. (8)

Below, we show that Jm is continuous and descends along (8). This is an important result,

which mimics the one in Hathaway et al. (1987) for fuzzy K-means (proof in Section S1).

Lemma 3. The functional Jm : Y −→ R is continuous.

Theorem 4. Consider y(iter−1) ∈ Y . Then for every y(iter) ∈ Tm(y
(iter−1)) we have

Jm
(
y(iter)

)
≤ Jm

(
y(iter−1)

)
, (9)
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i.e. Jm is a descent functional for Tm. Moreover, Jm descends strictly along the iterations

if y(iter−1) /∈ Ω, where Ω ⊆ Y is the solution set of ŷ = (P̂, Ŝ, v̂1, . . . , v̂K) ∈ Y such that

Jm

(
P̂, Ŝ, v̂1, . . . , v̂K

)
≤ Jm

(
P, Ŝ, v̂1, . . . , v̂K

)
∀P ∈ [0, 1]K×N (10)∑K

k=1 pk,i = 1∑N
i=1 pk,i > 0;

Jm

(
P̂, Ŝ, v̂1, . . . , v̂K

)
≤ Jm

(
P̂,S, v̂1, . . . , v̂K

)
∀S ∈ RK×N ; (11)

Jm

(
P̂, Ŝ, v̂1, . . . , v̂K

)
< Jm

(
P̂, Ŝ,v1, . . . ,vK

)
∀vk ∈ Vk (12)

vk ̸= v̂k.

Remark 2. Although the previous result does not guarantee that every sequence of iter-

ations (8) converges to a minimizer of the functional Jm, it is a necessary condition for

convergence and a desirable property for the algorithm.

In the previous theoretical results and algorithm, the lengths c1, . . . , cK ∈ [cmin, cmax]

of the cluster centers remain fixed. However, we seek to identify local similarities even

when the lengths of the matching curve portions are not known a priori. This problem

has been already tackled by local sequence alignment methods in bioinformatics, whose

goal is to find similar stretches of unknown lengths within a collection of nucleotide or

amino acid sequences. In this context, one of the most widely used algorithms is BLAST

(Altschul et al., 1990). BLAST starts by finding short stretches shared by the sequences,

and uses them as seeds. It then extends the seeds on both sides to construct larger local

alignments, stopping when the similarity score drops below a given threshold. Borrowing

this logic, we add a center elongation step to our algorithm. This step is performed only

when the algorithm is reaching convergence, to guarantee that we do not extend low-

quality cluster centers. We attempt elongation on both the left and the right of each center,

generating the elongated center using equation (7) on the corresponding aligned curves, first

for the interval (−δelong, ck) and then for the interval (0, ck + δelong). For elongation to be

acceptable, we require that the corresponding objective function Jm,k(P,S,v1, . . . ,vK) =
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∑N
i=1 (pk,i)

m d2
(
x̃i,sk,i ,vk

)
decreases or that it increases less than a given threshold ∆Jm,k

.

Note that this implies that Theorem 4 is not valid when the elongation is performed since

the objective function Jm is allowed to increase.

Further details on probKMA implementation are provided in Section S2.

3 Cluster evaluation and functional motif discovery

To evaluate a probKMA clustering, we develop a generalized silhouette index, similar to

the one used in classic clustering (Rousseeuw, 1987). Our index is defined for portions

of curves and measures how well each portion fits its own cluster. First, we dichotomize

the membership matrix P̂ to transform it into a matrix of zeros and ones as explained in

Subsection S2.1, and we extract all the curve portions belonging to a cluster, i.e. for which

the dichotomized membership probability is equal to 1. Next, we compute the distance

dj(k) of each portion j = 1, . . . , J from cluster k as the mean of the distances between j

itself and all the portions of cluster k. We define the intra-cluster distance as aj = dj(kj) –

the distance of portion j from the cluster kj it belongs to – and the inter-cluster distance

as bj = mink ̸=kj dj(k) – the minimum distance of portion j from all the other clusters. The

generalized silhouette index for portion j is

sj =
bj − aj

max(bj, aj)
∈ [−1, 1].

Large values of sj indicate that j is appropriately assigned to its cluster, while low values

indicate bad assignments. In particular, negative values signify that portion j is closer to

a cluster different from the one it was assigned to. For each cluster k, we then compute its

average silhouette index Sk considering all the portions assigned to k. This measures the

compactness of the cluster and hence its quality. Finally, the overall average silhouette index

S measures the overall quality of the clustering. Similar to classic clustering, silhouettes

for portions, clusters and overall clustering are visualized in a silhouette plot (see examples

in Figs. S27(b) and S35(c)) that facilitates their interpretation.

Like other K-means algorithms, probKMA finds a local minimum of the functional

Jm and its output heavily depends on initialization. If the goal is to locally cluster the
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curves in K groups, we repeat the algorithm using different initializations (and possibly

different initial lengths) and we select the solution with the lowest value of Jm. When K

is not known, the generalized silhouette index allows one to compare the results obtained

with different K and select the best one. If the goal is functional motif discovery, we run

probKMA multiple times with different initializations, cluster numbers, and motif initial

lengths, and form the set of candidate motifs taking the union of the solutions. We clean

this set of candidate motifs using generalized silhouette indices and number of occurrences.

We then merge very similar candidate motifs, as they may correspond to the same motif

identified by multiple runs of probKMA (Section S3). Finally, we utilize a motif search

algorithm to locate all instances of the discovered motifs in the input curves, i.e. all portions

of curve with distance lower than a given radius from each motif (Section S3).

4 Simulations

4.1 Generating 1-dimensional curves in complex scenarios

Generating curves comprising functional motifs is a non-trivial task since we require motifs

to be smoothly embedded in curves while allowing them to occur with noise. To do this,

we exploit the flexibility provided by B-splines. We consider a B-spline basis {Φl}Ll=1 of

order n, with equally spaced knots t1, . . . , tL−n+2, and define each 1-dimensional curve as

x(t) =
∑L

l=1 clΦl(t), where cl ∈ R, l = 1, . . . , L are coefficients to be chosen. The order

n controls smoothness and complexity of x (x is a curve of class Cn−2 and a piece-wise

polynomial of degree n− 1). Higher orders provide more degrees of freedom, allowing one

to generate curves with more complex shapes, and smoother at the knots. Each Φl has

compact support – it is 0 outside an interval of length nT , where T is the distance be-

tween two subsequent knots; this allows us to define a functional motif of length T fixing

the values of n coefficients cm,i, . . . , cm,i+n−1 and repeating them multiple times within the

same curve or across different curves. Longer motifs of length 2T, 3T, . . . , that may result

in more complex shapes, can be created similarly, fixing the values of n + 1, n + 2, . . .

subsequent coefficients. Since a single curve can embed more than one functional motif, as
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well as more than one occurrence of the same motif, we require motifs to be separated by

at least one sub-interval (ti, ti+1) as not to be artificially merged (i.e. we require at least

n background coefficients between them). Motif occurrences that are “the same”, both in

shape and level, are generated adding Gaussian noise to their coefficients: c̃m,j = cm,j + ϵj,

ϵj
iid∼ N(0, σ2). Motif occurrences that are “the same” in shape but have different levels

are obtained adding a constant δm to all the coefficients that define a single occurrence

(different constants for different occurrences): c̃m,j = cm,j + δm + ϵj, ϵj
iid∼ N(0, σ2). Back-

ground coefficients cbg ∈ [a, b] (i.e., coefficients not corresponding to motifs) are generated

as (cbg − a) /b
iid∼ Beta(0.45, 0.45), creating reasonably different backgrounds for both the

curve and its derivative. With this flexible model, we can generate data in several scenarios,

varying curve and motif lengths, as well as variability, frequencies, and positions of motifs.

4.2 Functional motif discovery: varying curve length ℓ and noise

σ in motifs

This simulation study aims to demonstrate the performance of probKMA in discovering

functional motifs embedded in a set of curves and to examine the effects of increasing

curve length and the noise level comprised in motif occurrences. We consider two different

scenarios, with sets of curves embedding (1) motifs that share both shapes and levels; or

(2) motifs that share shapes but have different levels.

In scenario (1), we consider a set of 20 curves embedding two functional motifs, each

with 12 occurrences (see Fig. 2 and Figs. S3-S5). In particular, 12 curves contain only one

occurrence of a motif (6 curves for each of the two motifs), 4 curves contain two occurrences

of a motif (2 curves for each of the two motifs), 2 curves contain one occurrence of each

of the two motifs, and 2 curves contain no motif occurrences at all. We generate data

using a B-spline basis of order 3, knots at distance 10, and motifs of length 60. Coefficients

defining the two motifs are randomly generated from a Beta(0.45, 0.45) distribution rescaled

to [−15, 15]. We consider four different curve lengths ℓ = 200, 300, 400, 500 and four levels

of noise σ = 0.1, 0.5, 1, 2, for a total of 16 simulated datasets. In order to maximize the

consistency among these datasets and thus highlight the effects of different ℓ and σ values,
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we place motif occurrences within the leftmost sub-interval of length 200 of each curve

that is common to all datasets, utilizing the same motif positions and background in all 16

cases. We treat the simulated curves as known, and we sample them on a grid of points at

distance 1, so that each motif corresponds to 61 points. For each combination of ℓ and σ,

we run our probKMA-based functional motif discovery with Sobolev-like distance d0.5(·, ·).

We evaluate the number of motifs found, the distance between true and estimated motifs,

the estimated lengths of motifs, and the number of true and false positives. ProbKMA is

run for K = 2, 3, minimum motif lengths cmin = 40, 50, 60 and 20 random initializations

for each (K, cmin) pair (the maximum motif length is set to 70; see Subsection S4.1 for

other parameters). The same initializations are employed for all ℓ and σ combinations.

Results for ℓ = 200 can be found in Fig. 3 and show very good performance for our

method. As expected, performance slightly declines when more noise is introduced in the

motif instances: some occurrences can be missed, and/or false positives can be included.

However, results remain satisfactory even when σ = 2. Results for other curve lengths
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Figure 2: Simulation scenario (1) with ℓ = 200 and σ = 1. (a), (b) Two functional motifs

(solid curves) and 12 aligned occurrences of each (dashed curves); (c) 20 curves embedding

occurrences of the two motifs.
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are shown in Figs. S6-S8. They suggest the same behavior as the noise level increases and

they appear rather robust across lengths. The only effect of increasing the ratio between

background curve portions and curve portions occupied by motifs is a slight increase in

false positives, which occurs exclusively when also the noise level is high.

In scenario (2) we consider the same curves and motifs as in scenario (1), but allow

motif occurrences to have different levels (see Figs. S9-S12). In particular, a random value

δm ∼ U(−10, 10) is added to all the coefficients defining each motif occurrence (a different

value δm for each occurrence). For each combination of ℓ and σ, we run our probKMA-based

discovery with the L2-like pseudo-distance d1(·, ·) to focus on curve variation. Parameters
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Figure 3: Functional motif discovery results for simulation scenario (1) with ℓ = 200 and

varying σ. (a) Motif 1; (b) Motif 2. The boxplots are obtained from 10 replications at

each σ value. They show the distance between true and estimated motifs (stepwise line:

distance between the true motif and the average of all motif occurrences), the estimated

length of motifs, true and false positives. In all cases, exactly 2 motifs are found.
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are the same as in scenario (1), and detailed results are provided in Figs. S13-S16. We find

again that our method has good performance, affected (as expected) by the noise level, but

not much by the length of the curves. In some cases, especially when the curves are very

long, we actually discover motifs that were not embedded in the simulated data. Note that,

strictly speaking, these motifs are not altogether false. As one elongates the background

portions of the curves, it is possible to generate by chance a few patterns that recur often

enough to be identified by our algorithm. In our experiments, these additional motifs are

noisier and have fewer occurrences than the two motifs originally embedded in the data.

Additional simulation studies to validate the results described above and examine the

robustness of the method to the number of initializations can be found in Subsection S4.1,

in particular in Figs. S17-S22.

4.3 Comparison with time series motif discovery

We compare our probKMA-based functional motif discovery to time series motif discovery.

In particular, we consider the recent Matrix Profile (Yeh et al., 2016, 2018). This tool

discovers the top motif pairs in a time series and, for each of these pairs, provides all the

neighboring subseries, i.e. all the subseries with distance less than R from the motif pair (see

Subsection S4.2). We consider two specifications of the simulation scenarios introduced in

Subsection 4.2: the simple case of short curves and low noise level (ℓ = 200 and σ = 0.1),

and the complex case of long curves and high noise level (ℓ = 500 and σ = 2). Both

probKMA-based motif discovery and Matrix Profile discover the two motifs in the simple

case. However, when curves are longer and motifs noisier (complex case), Matrix Profile

fails to find Motif 1 and includes many false positives in Motif 2. When the radius is large,

it does correctly identify a small number of occurrences of Motif 1, but it also reports a

very large number of false positives (for both motifs). On the contrary, probKMA-based

motif discovery remains robust to noise level and curve length, and is able to identify both

motifs with a very small number of false positives (see Tables S1-S3).
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4.4 Comparison with non-sparse and sparse functional clustering

We perform simulation experiments to compare probKMA, meant as a clustering method

and separate from its motif discovery purpose, to other functional clustering methods: the

standard functional K-means (Tarpey and Kinateder, 2003), the K-means with (global)

alignment of Sangalli et al. (2010), and the sparse clustering technique of Floriello and

Vitelli (2017) (see details in Subsection S4.3). We consider the following scenarios: (a)

curves in the two clusters are aligned and they differ on the entire domain; (b) curves in

the two clusters are misaligned and they differ on the entire domain; (c) curves in the two

clusters differ on a portion of the domain and this portion is aligned; (d) curves in the

two clusters differ on a portion of the domain and this portion is misaligned. Running all

methods with Euclidean distance and K = 2, they all correctly classify curves in scenario

(a). K-means only works in this scenario, while K-means with (global) alignment performs

well in scenarios (a) and (b), and sparse clustering performs well in scenarios (a) and

(c). Interestingly, when the noise level is small, sparse clustering also achieves a good

performance in scenario (b). ProbKMA performs very well in all scenarios (Tables S4-S5).

5 Real data applications

ProbKMA is very flexible and it can be applied to any kind of functional data, from

any domain. As shown in the previous section, it can be employed not only to discover

functional motifs but also as a (probabilistic) local clustering method. In this section,

we provide two detailed real data applications which illustrate these two possible uses of

probKMA. An additional application to a well-known dataset in the functional clustering

literature, the Berkeley Growth Study curves, is provided in Subsection S5.1.

5.1 Local clustering of Italian Covid-19 excess mortality curves

Italy was the first European country to be hit by the Covid-19 pandemic, with the first

confirmed cases around mid-February 2020. Italian regions were hit at different times and

with different strength, and local authorities implemented different responses, especially in
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the initial stages. Comparing the pandemic evolution across regions can therefore provide

important insights on the role of underlying factors and different containment measures.

We estimate excess mortality due to Covid-19 in Italy using the mortality data (due to

all causes) from the Italian Institute of Statistics (ISTAT). The dataset contains the daily

number of deaths for 7,270 municipalities (covering about 93.5% of the Italian population)

from January 1st to April 30th, for the years 2015-2020. We aggregate data by region

and we compute the excess mortality rate curves as the daily difference between 2020

deaths and average deaths in the period 2015-2019, divided by the population of the con-

sidered municipalities (see Subsection S5.2). In order to focus on the Covid-19 period, we

only consider data starting from February 16th. To reduce noise, we smooth the curves

using B-spline smoothing (cubic splines, knots at each day, roughness penalty on the sec-

ond derivative, and smoothing parameter chosen by average generalized cross-validation).

Smoothed curves are shown in Fig. 4(a), while raw data are in Fig. S29.

We cluster the 20 Italian regions according to their excess mortality rate curves to

assess if some regions are sharing similar patterns (see also Boschi et al., 2021). We are

interested in the entirety of the curves – possibly excluding the extremes of their domains

– but we allow shifts in their alignment to take into consideration possible differences in

the time when the (shared) patterns began in each region. We employ probKMA as a local

clustering method, with L2-like distance d0(·, ·) and cluster centers of fixed length c = 65

days (hence allowing for a maximum shift of 10 days). Fig. 4(b)-(c) shows probKMA results

for K = 2, when assigning each curve to the cluster with highest membership probability.

Cluster 2 contains the regions (mainly located in the north of Italy) where Covid-19 hit

the hardest. Lombardia is the region with earliest Covid-19 related deaths, followed by

Emilia Romagna, Marche, Liguria, Piemonte and Trento/Bolzano, and last Valle d’Aosta

(with a delay of 7 days). Cluster 1 contains the regions with milder epidemic patterns.

Interestingly, Veneto is placed in Cluster 1 despite being the first region, together with

Lombardia, to report Covid-19 cases. This suggests that Veneto successfully managed to

flatten the curve with its early mass testing and contact tracing response (Mugnai and

Bilato, 2020). In contrast, the pattern in Lombardia is so stark that it does not seem to fit
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Figure 4: Covid-19 excess mortality curves and probKMA results. (a) Smoothed curves.

Vertical solid lines represent national lockdown (March 9th) and closure of all non-essential

economic activities (March 23rd); (b) Cluster centers (thick curves) with aligned portions of

curves; (c) Alignment between portions of curves within clusters (start day of each portion).

properly even in Cluster 1 and shows a large distance from the cluster center (Fig. S30).

Indeed, repeating the clustering with K = 3, Lombardia is placed in a cluster of its own,

while the other two clusters and the alignments within them do not change (see Fig. S31).

5.2 Motif discovery in mutagenesis data

To fully illustrate the proposed method in its motif discovery purpose, we apply it to a

mutagenesis dataset adapted from Kuruppumullage Don et al. (2013) that we provide at

https://github.com/marziacremona/mutagenesis_data. Mutagenesis comprises all the
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processes by which mutations are generated in DNA, it is one of the major evolution-

ary forces and is central to causing many human diseases (e.g. cancer). Understanding

mutagenesis and how it is influenced by the genomic landscape is key to shedding light

on genome dynamics (Makova and Hardison, 2015). Kuruppumullage Don et al. (2013)

estimated different types of neutral (i.e. not affected by selection) mutation rates in non-

overlapping windows along the human genome comparing it with primates, and employed

Hidden Markov Models to define six divergence states and segment the genome accord-

ingly. One of the states is of particular interest: it comprises hot regions with very high

rates for substitutions, small insertions, and small deletions, which are associated with high

GC (guanine-cytosine) content, early replication timing, and open chromatin. Since these

results were obtained at a rather large scale (1-Mb windows), investigating rates at a finer

resolution within the hot regions may reveal more specific trends and patterns of varia-

tion. Note that, in general, we could aim at discovering 3-dimensional motifs, i.e. joint

patterns of substitutions, insertions, and deletions. However, for simplicity, we consider

only 1-dimensional substitution rate curves. Estimating high-resolution substitution rates

in 1-kb windows within each hot region (with the same pipeline as in Kuruppumullage Don

et al., 2013, see Subsection S5.3 and Fig. S32), we generate a dataset of 43 curves, varying

in length from 1 Mb (corresponding to a grid of 1, 000 points) to 22 Mb (22, 000 points).

The curves are very noisy and contain several missing or inaccurate values since in many

1-kb windows the information needed to estimate rates is scarce (see Fig. S33). In partic-

ular, substitution rates can be reliably estimated only in 60% of the 1-kb windows. After

pre-processing with stochastic regression imputation and local smoothing, missing values

are reduced to 17% of the windows (see Subsection S5.3).

We employ our probKMA-based functional motif discovery on the 43 curves using the

Sobolev-like distance d̃0.5(·, ·) (the generalized version which can accommodate large gaps;

see Subsection S2.2). We look for motifs with minimum lengths cmin = 40, 50, 60, 70 (max-

imum length cmax = 150), and we run probKMA for K = 2, 3, 4, 5 using 10 random ini-

tialization for each (K, cmin) pair. We employ our generalized silhouette index to evaluate

each probKMA run and to filter the set of candidate motifs, and we select motif-specific
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Table 1: ProbKMA-based functional motif discovery in substitution rate curves. For each

motif found, we report the number of occurrences and their mean distance from the motif.

Motif 1 2 3 4 5 6 7 8 9 10 11 12 13

Number 19 12 27 37 63 12 72 47 14 11 9 8 6

Mean dist 1.9 1.9 3.5 5.1 6.5 3.0 8.7 7.4 5.2 3.0 5.5 18.5 17.0

radii based on probKMA results (see details in Subsection S5.3). We identify 13 functional

motifs that differ substantially in length (40 to 104 kb), levels and shapes (see Fig. 5(a)).

The motifs also differ in frequency (i.e. number of occurrences in the data) and level of

variability (see Table 1). This highlights the advantage of employing a motif discovery

methodology able to learn motif-specific length, frequency, and variability from the data.

At least four of the motifs found are of biological interest: Motif 12 corresponds to eight

long sub-regions (about 100 kb) with extremely high substitution rate (an elevation of 10%

to 20% relative to the mean level across all hot regions, which is already elevated in com-

parison to the genome at large). Motif 4 and Motif 8 also present very high substitution

rate and opposite patterns. In Motif 4, rate is about 10% above the overall hot regions

mean for the initial ∼20 kb, and then decrease. In Motif 8 rate increases and then stabilizes

at about 10% above the mean for ∼20 kb. The two motifs have similar variability and are

both very frequent (37 and 47 occurrences, respectively). Finally, Motif 13 corresponds to

six long sub-regions with a substitution rate 20-30% below the mean. These portions of

the hot regions are in fact not hot; substitutions rate is similar to that of the rest of the

genome. To investigate the genomic landscape of the motifs found, we consider a set of

35 genomic features measured in each of the 1-kb windows constituting the hot regions.

These features represent biological contexts that have an interplay with mutagenesis, such

as DNA conformation, DNA sequence, replication, recombination, chromatin openness and

modifications (see Table S6). We then compare, independently for each genomic feature

and each motif, the mean of the measurements in motif occurrences with the mean across

all hot regions. We perform a simulation-based two-sided test for mean difference, where

the empirical null distribution is obtained from 1000 datasets generated by randomly re-

locating motif occurrences within the set of curves. Fig. 5(b) shows that each motif has a
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Figure 5: ProbKMA-based functional motif discovery in substitution rate curves. (a) Mo-

tifs found, plotted as percent changes with respect to the mean substitution rate across

all hot regions; (b) Genomic landscape of the motifs, with color intensity proportional

to the significance (− log10(p)) of a mean difference two-sided test contrasting motif oc-

currences and hot regions at large; red, blue, and white represent positive, negative and

non-significant (p > 0.1) differences, respectively. Rimmed columns and arrows show four

particularly interesting motifs.

characteristic genomic landscape, which helps in its biological interpretation. For example,

occurrences of Motif 13 are enriched in exons and conserved elements compared to hot

regions in general; their lowered substitution rate may correlate with such enrichments.

6 Discussion

This article, for the first time to the best of our knowledge, tackles the problem of func-

tional motif discovery from a statistical perspective. We proposed probKMA for discovering

candidate motifs in a set of curves, incorporating ideas from functional data analysis, bioin-

formatics and fuzzy clustering. In addition, we proposed a generalized silhouette index to

evaluate probKMA results, and implemented a post-processing for merging candidate mo-

tifs and searching motif occurrences along the curves. Although many alternative strategies

can be employed in post-processing, each with pros and cons, results on simulated and real
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data suggest that our implementation is effective in a range of scenarios.

ProbKMA employs a flexible definition of curve similarity, which incorporates both lev-

els and derivatives. In addition, similarity is defined locally, in a way that tolerates large

gaps in the curves. This broadens the application scope of our methodology. ProbKMA

can also be applied to multivariate curves and does not require the user to specify the exact

motif lengths or the motif variability levels at the outset. These are learned from the data

– the user only needs to specify the minimum and the maximum lengths of the motifs to

discover – substantially improving performance with respect to approaches where lengths

and/or radii are fixed. Real data applications usually require some pre-processing steps

– such as smoothing to estimate the curves from discretely observed data – which might

artificially introduce “false” motifs in the curves (see, e.g., Subsection S5.3). As a conse-

quence, the user must carefully select minimum motif lengths which are compatible with

the pre-processing, in particular with the choice of smoothing parameters. The minimum

motif length ought to be larger than the length of potential artificially-introduced motifs

which, intuitively, is larger the more smoothing has been applied to the data.

In our experience, motif discovery with probKMA can fail when motifs are too similar

to one another or when they are too similar to background portions of the curves. This

can happen by chance when motifs are very noisy. Relatedly, simulations show that, when

motifs are very noisy and/or dispersed in very long curves, our method can identify motifs

that were not intentionally introduced in the data, but rather randomly created when

generating background portions of the curves. In a way, these additional motifs may be

considered as unintentional and yet true (as opposed to false) positives; they do recur in

the curves in a way that is detectable by the algorithm. Nevertheless, in our simulations

they are noisier and have fewer occurrences. This observation underscores the need for

further work addressing the statistical significance of the motifs. The flexible model that

we introduced to generate simulation data may play an important role in this context,

providing a way to estimate the likelihood of discovering motifs in background curves.

We used a deliberately general, data-driven and non-parametric notion of functional

motif – in line with those used in, e.g., the bioinformatics and data mining literature
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(Bailey et al., 2006; Lin et al., 2002). Albeit beyond the scope of this article, it would be

of utmost interest to formulate a parametric definition of functional motif and develop a

rigorous statistical theory for its estimation.

Separately from its motif discovery purpose, probKMA can also be employed for proba-

bilistic clustering of misaligned functional data based on local similarities. In this respect,

it also represents a generalization of sparse clustering procedures recently proposed in func-

tional data analysis (Fraiman et al., 2016; Floriello and Vitelli, 2017). In the limit, when the

minimum motif length is close to the length of the curves under consideration, probKMA

becomes a probabilistic version of K-means with (global) alignment (Sangalli et al., 2010).

Supplementary material

Supplementary material includes proofs, additional methods and results. An R implementa-

tion (with examples) is available at https://github.com/marziacremona/ProbKMA-FMD.
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Statistics, Penn State University. F. Chiaromonte is also affiliated to the Inst. of Economics and EMbeDS,
Sant’Anna School of Advanced Studies.

1



S1 Proofs

Proof of Proposition 1. We start considering the minimization of the functional (2) ignoring

the constraint
∑N

i=1 pk,i > 0 for all k. The membership probabilities pi = [p1,i, . . . , pK,i]

related to different curves xi vary independently and

min
pk,i∈[0,1]∑K
k=1 pk,i=1

Jm(P, Ŝ, v̂1, . . . , v̂K) =
N∑
i=1

min
pk,i≥0∑K

k=1 pk,i=1

K∑
k=1

(pk,i)
md2(x̃i,ŝk,i , v̂k).

Hence the optimization problem is equivalent to N independent minimizations of the func-

tions fm,i : RK −→ R, pi 7−→
∑K

k=1 (pk,i)
md2(x̃i,ŝk,i , v̂k) subject to the constraints pk,i ≥ 0

and
∑K

k=1 pk,i = 1, for any i = 1, . . . , N .

For i /∈ R, fm,i with constraints pk,i ≥ 0 and
∑K

k=1 pk,i = 1 is minimized by p̂i if and

only if it satisfies (4). In particular, fm,i(p̂i) = 0.

For i ∈ R, we employ Karush-Kuhn-Tucker conditions on fm,i with gk(pi) = −pk,i ≤ 0

for all k and h(pi) =
∑K

k=1 pk,i − 1 = 0. Regularity conditions are satisfied (fm,i, gk and

h are continuously differentiable, gk and h are affine functions) and the Lagrangian as-

sociated to the optimization problem is given by L(pi, λ, µ) = fm,i(pi) −
∑K

k=1 λkpk,i +

µ
(∑K

k=1 pk,i − 1
)
. If p̂i is a constrained minimizer of fm,i then there exist constants λ̂ and

µ̂, with (λ̂, µ̂) ̸= 0, such that the following conditions hold:

∇fm,i(pi)−
K∑
k=1

λ̂k∇pk,i + µ̂∇

(
K∑
k=1

pk,i − 1

)∣∣∣∣∣
pi=p̂i

= 0, (S1)

λ̂kp̂k,i = 0 k = 1, . . . , K, (S2)

λ̂k ≥ 0 k = 1, . . . , K. (S3)

Condition (S1) implies
∂fm,i

∂pk,i
(p̂i)− λ̂k + µ̂ = 0 for each k, and hence

p̂k,i =

(
λ̂k − µ̂

m d2
(
x̃i,ŝk,i , v̂k

)) 1
m−1

.

From p̂k,i ≥ 0 follows λ̂k ≥ µ̂ for all k. Suppose there exists l such that λ̂l > 0. Then

condition (S2) implies p̂l,i = 0, hence λ̂l = µ̂. For all k, we obtain 0 < λ̂l = µ̂ ≤ λ̂k and

hence, from condition (S2), p̂k,i = 0. This solution is not admissible because it does not
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respect the constraint
∑K

k=1 pk,i = 1, hence λ̂ = 0, µ̂ < 0 and p̂k,i =

(
−µ̂

m d2
(
x̃i,ŝk,i , v̂k

)) 1
m−1

,

k = 1, . . . , K. In order to compute the value of µ̂ we use the constraint
∑K

k=1 pk,i = 1,

obtaining

p̂k,i =

 K∑
l=1

(
d2
(
x̃i,ŝk,i , v̂k

)
d2
(
x̃i,ŝl,i , v̂l

) ) 1
m−1

−1

k = 1, . . . , K.

To show that the previous equation is also sufficient for p̂i to be a constrained minimizer

of fm,i, we observe that fm,i, gk and h are twice continuously differentiable and we consider

the Hessian matrix HL =
[

∂2Lm,i

∂pl,ipk,i

]
of the Lagrangian. For l ̸= k we have

∂2Lm,i

∂pl,ipk,i
= 0, while

for l = k we have
∂2Lm,i

∂2pk,i
(pi, λ, µ) = m(m − 1)(pk,i)

m−2d2
(
x̃i,ŝk,i , v̂k

)
. The diagonal matrix

HL is a positive definite matrix in the point (p̂i, λ̂, µ̂) that satisfies the first-order Karush-

Kuhn-Tucker conditions (since m > 1 and p̂k,i > 0), hence p̂i is a strict local minimizer of

fm,i.

The set
{
pi ∈ RK | pk,i ∈ [0, 1],

∑K
k=1 pk,i = 1

}
is convex and the function fm,i is strictly

convex (sincem > 1 and d(x̃i,ŝk,i , v̂k)) > 0 for all k), hence the local minimizer p̂i is actually

the unique global minimizer of fm,i.

Finally, the hypothesis |R| ≥ K guarantees that the solution P̂ defined by (3)-(4) satisfy

the constraint
∑N

i=1 p̂k,i > 0 for all k.

Proof of Proposition 2. Since the contribution of each cluster k to the functional (6) is

independent of the contributions of other clusters, we have

min
v1,...,vK

Jm(P̂, Ŝ,v1, . . . ,vK) =
K∑
k=1

min
v1,...,vK

N∑
i=1

(p̂k,i)
md2α

(
x̃i,ŝk,i ,vk

)
.

Hence we can solve K independent optimization problems. In particular, for each cluster k

we minimize gm,k : Vk −→ R, vk 7−→
∑N

i=1 (p̂k,i)
md2α

(
x̃i,ŝk,i ,vk

)
. Let v̂k, φ ∈ Vk fixed and

define g : R −→ R, that maps u 7−→ gm,k (v̂k + uφ) =
∑N

i=1 (p̂k,i)
md2α

(
x̃i,ŝk,i , v̂k + uφ

)
.

The function gm,k has a minimum in vk = v̂k if and only if g has a minimum in u = 0. A

necessary condition is g′(0) = 0, that implies
dgm,k

du
(v̂k + uφ)

∣∣∣
u=0

= 0 for all φ ∈ Vk. For
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every α ∈ [0, 1), dα(·, ·) is the distance induced by the following inner product in Vk:

⟨y1,y2⟩α =
1

d

d∑
ν=1

wν

ck

∫ ck

0

[
(1− α)y

(ν)
1 (t)y

(ν)
2 (t) + αy

′(ν)
1 (t)y

′(ν)
2 (t)

]
dt. (S4)

For α = 1, (S4) satisfies all the inner product properties in Vk, with the exception that

⟨y,y⟩1 = 0 only implies y = const a.e. in (0, ck); d1(·, ·) is its induced semi-distance. Using

this notation, we obtain

0 =
N∑
i=1

(p̂k,i)
m d

du

[
⟨x̃i,ŝk,i − v̂k − uφ, x̃i,ŝk,i − v̂k − uφ⟩α

]
u=0

=
N∑
i=1

(p̂k,i)
m d

du

[
⟨x̃i,ŝk,i − v̂k, x̃i,ŝk,i − v̂k⟩α

−2u⟨x̃i,ŝk,i − v̂k, φ⟩α + u2⟨φ, φ⟩α
]
u=0

= −2 ⟨
N∑
i=1

(p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
, φ⟩α

for every φ ∈ Vk. In particular, we can choose φ =
∑N

i=1 (p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
, obtaining

⟨
N∑
i=1

(p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
,

N∑
i=1

(p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
⟩α = 0. (S5)

If α ̸= 1, (S5) implies
∑N

i=1 (p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
= 0 a.e. in (0, ck). Using the non-

degenerate clusters assumption
∑N

i=1 p̂k,i > 0 we obtain

v̂k =

N∑
i=1

(p̂k,i)
mx̃i,ŝk,i

N∑
i=1

(p̂k,i)
m

a.e. in (0, ck).

If α = 1, (S5) implies
∑N

i=1 (p̂k,i)
m
(
x̃i,ŝk,i − v̂k

)
= const a.e. in (0, ck). Hence we have

v̂k =

N∑
i=1

(p̂k,i)
mx̃i,ŝk,i

N∑
i=1

(p̂k,i)
m

+ const a.e. in (0, ck).

To show the sufficiency of the previous equation for v̂k to be a minimizer, we compute

the second-order derivative of g: g′′(u) = 2
∑N

i=1(p̂k,i)
m⟨φ, φ⟩α. Since

∑N
i=1 p̂k,i > 0, we
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have g′′(u) > 0. Hence u = 0 is a strict local minimizer of g and v̂k is a strict local

minimizer of gm,k.

The constraint
∑N

i=1 p̂k,i > 0 implies also that the function gm,k is strictly convex on

Vk, hence the local minimizer v̂k is actually the unique global minimizer of gm,k.

Proof of Lemma 3. The functions t 7→ t + sk,i, y 7→ ym, and d are continuous. The func-

tional Jm is the sum of products of compositions of continuous functions, hence it is con-

tinuous.

Proof of Theorem 4. Let y(iter−1) =
(
P(iter−1),S(iter−1),v

(iter−1)
1 , . . . ,v

(iter−1)
K

)
∈ Y . We have

y(iter) =
(
P(iter),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
∈ Tm

(
y(iter−1)

)
,

hence v
(iter)
1 , . . . ,v

(iter)
K are computed using equation (7). From Proposition 2, it follows

that

Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
≤ Jm

(
P(iter−1),S(iter−1),v

(iter−1)
1 , . . . ,v

(iter−1)
K

)
.

Similarly, S(iter) is selected in order to minimize the distances d
(
x̃i,s,v

(iter)
k

)
, so

Jm

(
P(iter−1),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
≤ Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
.

Finally, P(iter) is computed using equations (3)-(4), hence from Preposition 1 we have

Jm

(
P(iter),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
≤ Jm

(
P(iter−1),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
.

Combining the previous three equations we obtain (9).

Suppose now that y(iter−1) /∈ Ω. If (12) does not hold for y(iter−1), then there exists

vk ∈ Vk with vk ̸= v
(iter−1)
k such that

Jm

(
P(iter−1),S(iter−1),v

(iter−1)
1 , . . . ,v

(iter−1)
K

)
≥ Jm

(
P(iter−1),S(iter−1),v1, . . . ,vK

)
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and by Proposition 2 we know that Jm(P
(iter−1),S(iter−1), ·) has a unique global minimizer,

hence

Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
< Jm

(
P(iter−1),S(iter−1),v

(iter−1)
1 , . . . ,v

(iter−1)
K

)
.

If y(iter−1) satisfies (12) but not (11), then v
(iter)
k = v

(iter−1)
k and there exists S ∈ RK×N

such that

Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
> Jm

(
P(iter−1),S,v

(iter)
1 , . . . ,v

(iter)
K

)
.

Since S(iter) minimizes d
(
x̃i,s,v

(iter)
k

)
we have that

Jm

(
P(iter−1),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
< Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
.

Finally, if y(iter−1) satisfies (11) and (12), but not (10), we have that v
(iter)
k = v

(iter−1)
k and

there exists P ∈ [0, 1]K×N , with
∑K

k=1 pk,i = 1 and
∑N

i=1 pk,i > 0, such that

Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
> Jm

(
P,S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
.

Then from Proposition 1 and equation (11) follows that

Jm

(
P(iter),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
< Jm

(
P(iter−1),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
≤ Jm

(
P(iter−1),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
.

The matrix S(iter) minimizes d
(
x̃i,s,v

(iter)
k

)
and does not depend on P, so we have

Jm

(
P(iter),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
≤ Jm

(
P(iter),S(iter−1),v

(iter)
1 , . . . ,v

(iter)
K

)
.

As a consequence

Jm

(
P(iter),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
< Jm

(
P(iter−1),S(iter),v

(iter)
1 , . . . ,v

(iter)
K

)
.
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S2 Implementation details of probKMA

S2.1 Cluster cleaning and detection of portions belonging to each

cluster

ProbKMA lacks the ability to distinguish the case of a curve xi1 that matches all K cluster

centers (i.e. d(x̃i1 ,vk) = ϵ, ∀k, with ϵ ≈ 0) from that of a curve xi2 that does not match any

of the K cluster centers (i.e. d(x̃i2 ,vk) = M , ∀k, with M ≫ 0). In both cases equation (3)

leads to the same membership probabilities pk,i1 = pk,i2 ≈ 1/K. To overcome this issue, we

perform a cluster cleaning step when the algorithm is near convergence. The membership

matrix P is dichotomized, that is all membership probabilities are transformed into either

0 or 1. We consider the quantile q 1
K

of order 1
K

of all distances d(x̃i,sk,i ,vk); membership

probabilities pk,i corresponding to distances lower than q 1
K
are set to 1, while all others are

set to 0. Note that, in this way, each curve xi is allowed not to belong to any cluster, as well

as to more than one cluster. This step distinguishes among the two extreme cases above (as

long as all or most curves are not extreme cases), leading to clean membership probabilities

pk,i1 = 1 and pk,i2 = 0, k = 1, . . . , K. Note that the order of the quantile employed in the

dichotomization can be changed based on our expectations or on the distribution of all

distances d(x̃i,vk). For example, if we expect many curves to belong to no cluster, we can

decrease the order of the quantile to set more memberships to 0.

This cleaning step is performed also at the end of the algorithm, to detect the curve

portions belonging to each cluster, i.e. the ones whose dichotomized membership is equal to

1, and to employ them to obtain better estimates of the cluster centers through equation (7).

These “clean” results are then employed in the computation of the generalized silhouette

index (see Section 3) and in the functional motif discovery post-processing (see Sections 3

and S3).

S2.2 Dealing with large gaps in the curves

As shown in Subsection 2.1, from a theoretical point of view the input curves are required

to satisfy only mild regularity conditions that are typical in functional data analysis. In
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practice, as for almost all methods in functional data analysis, probKMA works best if

the curves are reasonably smooth. Curve smoothing can address this need and highly

improve results. Moreover, in real applications each functional datum must be created

from discrete evaluations – possibly available on datum-specific and/or irregular grids, with

some measurements missing relative to other data. This too is tackled with smoothing, and

other straightforward pre-processing steps to fill small gaps. However, in some applications

input curves present also large gaps, i.e. miss entire subregions that cannot be meaningfully

imputed by smoothing (see, for instance, our application to mutagenesis data in Section 5).

Functional methods that consider the curves globally are not appropriate for this type of

data. On the contrary, our method can tolerate large gaps because it exploits the functional

data locally. We formalize this situation allowing the ith input curve xi : Di −→ Rd to

have a domain Di ⊆ R defined as a finite union of intervals. The distance in (5) is thus

generalized as

d̃2α (x,v) =
d∑

ν=1

wν

d

[
1− α

|(0, c) ∩D|

∫
(0,c)∩D

(
x(ν)(t)− v(ν)(t)

)2
dt

+
α

|(0, c) ∩D|

∫
(0,c)∩D

(
x′(ν)(t)− v′(ν)(t)

)2
dt

]
,

(S6)

where D is the domain of x. While the distance in (5) is computed on the whole interval

(0, c) where the cluster center v is defined, the dissimilarity in (S6) is computed only on the

portion of (0, c) that intersects the domain of x, and is well defined only if this intersection

is not empty, i.e. |(0, c) ∩D| > 0. Based on (S6), the equation to update the k-th cluster

center becomes

v̂k =

N∑
i=1

(p̂k,i)
m

|(0, ck) ∩ D̃i,sk,i|
I(0,ck)∩D̃i,ŝk,i

x̃i,ŝk,i

N∑
i=1

(p̂k,i)
m

|(0, ck) ∩ D̃i,sk,i|
I(0,ck)∩D̃i,ŝk,i

(S7)

a.e. on (0, ck)∩(
⋃N

i=1 D̃i,ŝk,i). Here IA is the indicator function of the set A, and D̃i,s = Di−s

is the domain of the shifted curve x̃i,s. For α = 1, v̂k is defined up to an additive constant.

Note that equations (S7) and (7) are very similar: the kth cluster center is still a weighted

average of the shifted curves, but the contribution of a curve now depends on its domain,
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in addition to its probability of belonging to cluster k. When no large gaps are present in

the input curves, (S7) reduces to (7).

S3 Functional motif discovery post-processing

Given the set of candidate motifs – obtained from multiple runs of probKMA and fil-

tered based on generalized silhouette indices and number of occurrences – we need a post-

processing to merge similar candidate motifs and locate all instances of the final set of

functional motifs (see Section 3). Merging and motif search can be tackled with many

different strategies, each with its pros and cons. To save computation, we devised imple-

mentations that take advantage of the large amount of information gained from the multiple

runs of probKMA – in particular, of the distances that have been computed between each

candidate motif and all input curves (both the ones that contain the motif, and the ones

that do not). Briefly, for merging we group similar candidate motifs benchmarking their

pairwise distance against the distances between all motifs and curves. In each group, we

select one representative motif based on its number of occurrences and the average distance

between the motif and its occurrences in the curves. If the candidate motifs in a group

have very different lengths, we can select more than one representative. This allows us to

retain both a long motif and a shorter motif – which may have a larger number of occur-

rences, or a smaller average distance. In addition, we estimate the variability within each

group of motifs, and we use it to define the radius R used in the motif search step. This

is group-specific and it allows us to map instances of each motif based on a data-driven

evaluation of its own signal-to-noise ratio.

In detail, we propose the following implementation for the post-processing.

1. Compute all pairwise distances between candidate motifs;

2. Perform hierarchical clustering with average linkage of candidate motifs, using their

pairwise distances;

3. Determine a global radius Rall based on the minimum distances between all candidate

motifs and all curves;
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4. Cut the hierarchical clustering dendrogram at height 2Rall, obtainingM groups of similar

motifs;

5. For each group m = 1, . . . ,M :

a. Determine a group-specific radius Rm based on the minimum distances between the

motifs of group m and all curves;

b. For each motif in group m

� Find the curves containing the motif, i.e. the curves with distance ≤ Rm from

the motif;

� Approximate the number of occurrences in the curves (portions of curves with

distance ≤ Rm from the motif), counting the number of curves containing the

motif;

� Approximate the average within-motif distance (i.e. the average distance between

the motif and all its occurrences in the curves) with the average of the minimum

distances between the motif and each of the curves containing it;

c. Select a very small number of motifs based on the approximate number of occurrences,

the approximate average within-motif distance and the motif length;

6. Find all occurrences of the selected motifs (portions of curves with distance ≤ Rm from

the motif).

Pairwise distances between candidate motifs in step 1 are computed according to the

same distance employed by probKMA, allowing alignment between each pair of motifs but

requiring a minimum overlap, defined as a percentage of the shortest motif in each pair

(default choice 60%).

During the last iteration of probKMA algorithm (and in particular in step iii) we com-

pute the minimum distances between each motif and all curves. Moreover, the curves are

divided in two groups: the ones that contain the motif, and the ones that do not contain

it. In steps 3 and 5a of the post-processing we utilize this piece of information in order to

compute the radii Rall and Rm (see Fig. S1). In particular, we employ k-nearest neighbors
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to select the distance that best discriminate the group of distances between each motif and

the curves that contain it (group 1), from the group of distances between each motif and

the curves that do not contain it (group 0). This distance is selected based on the posterior

probability of the k-nearest neighbors classifier (i.e. the percentage of votes for one group).

The advantage of using a non-parametric classifier such as k-nearest neighbors is that we

do not need any assumption on the distribution of distances in the two groups. However,

it is important to observe that the resolution of the posterior depends on the number of

neighbors used (k = 1 corresponds to probability of 0 and 1, k = 2 to 0, 0.5 and 1 and so

on). In addition, the posterior probability of the k-nearest neighbors classifier can be not

decreasing: for intermediate distances between the two groups we can have a distance clas-

sified as group 0, then a distance classified as group 1, and then again a distance classified

as group 0. In order to be conservative in defining group 1, we select the smallest distance

at which the posterior probability of belonging to group 1 is smaller than a given threshold.
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Figure S1: Example of post-processing, data from first simulation scenario in Subsec-

tion 4.2, l = 200, σ = 1. (a) Selection of a global radius Rall (step 3); (b) Hierarchical

clustering dendrogram cut at height 2Rall (step 4); (c)-(d) Selection of a group-specific

radius Rm in each of the two groups (step 5a).
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Figure S2: Example of post-processing, data from first simulation scenario in Subsec-

tion 4.2, l = 200, σ = 1. (a) Aligned candidate motifs in Group 1; (b) Alignment of

candidate motifs in Group 1; (c) Approximate average within-motif distance vs approxi-

mate number of occurrences, for motifs in Group 1 (step 5b). Circle size is proportional to

motif length. A red square indicates selected motif (step 5c); (d)-(f) Analogous plots for

motifs in Group 2.

Regarding the selection of k, with very small k the algorithm is very fast but give very

noisy results, while larger k create more stable results but take much more computational

time. Our default choice is k = 3 and threshold 0.5 for the posterior probability.

Computing approximate number of occurrences and approximate average within-motif

distance in step 5b allows us to avoid finding all occurrences of all motifs (i.e. all portions

12



of curves with distance ≤ Rm from each motif m) – which would be computationally

expensive. This approximation is done considering, for each motif, only one occurrence in

the curves containing it. If the motif occurs multiple times in a curve, only the occurrence

closest to the motif is considered. As a consequence, the approximate metrics represent

lower bounds of the actual metrics. Note that this approximation is good when only a small

number of curves contain multiple instances of the same motif. Our implementation lets

the user choose between the approximate metrics and the actual ones (the default choice

is approximate metrics, which is computationally lighter).

Selection of motifs in each group m (step 5c, Fig. S2) is done maximizing the approx-

imate number of occurrences while simultaneously minimizing the approximate average

within-motif distance. In particular, we order the motifs based on the sum of their ranks

in each of the two dimensions, and we select the top one (see Figs. S2c and S2f). If other

motifs in the same group have length very different from the selected one, we can allow the

procedure to select them too (by default, we select only the top motif in each group).

Step 6 represents a motif search step, that is needed in order to locate all occurrences of

the selected motifs, i.e. all portions of curves with distance ≤ Rm from each motif (with Rm

the group-specific radius for that motif). We observe that two overlapping portions of curves

tend to be quite similar. Hence, if a portion of curve matches a particular motif, the portion

of curve that begins and ends immediately at its left/right is likely to match the same motif

too. In order to avoid counting multiple times the same motif occurrence, we require that

two occurrences of the same motif are well separated (analogously to Lin et al., 2002). In

particular, let vm be a selected motif that matches a curve x in two portions corresponding

to the shifts s1 < s2, i.e. d (x̃s1 ,vm) ≤ Rm and d (x̃s2 ,vm) ≤ Rm. In order to count both

occurrences, we ask that there exists a shift s ∈ (s1, s2) such that d (x̃s,vm) > Rm. Among

all the s ∈ (sl, sr) such that d (x̃s,vm) ≤ Rm, with d (x̃sl ,vm) > Rm and d (x̃sr ,vm) > Rm,

we select the shift that minimizes d (x̃s,vm).
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S4 Simulations: additional results

S4.1 Functional motif discovery: varying curve length and noise

in motifs

Here we report additional information related to simulations in Subsection 4.2.

Figs. S3-S5 show the two functional motifs, the 12 aligned occurrences of each motif,

and the 20 curves embedding occurrences of the two motifs, for curve length ℓ = 200 and

noise levels σ = 0.1, 0.5, 2 in simulation scenario (1) (data for σ = 1 are shown in Fig. 2).

Figs. S6-S8 show the performance of our probKMA-based functional motif discovery for

different levels of noise and curve lengths ℓ = 300, 400, 500 (results for curve length ℓ = 200

are shown in Fig. 3). Analogous information for simulation scenario (2) are showed in

Figs. S9-S16.

In simulation scenario (1), we employ Sobolev-like distance d0.5(·, ·) to measure similar-

ities between portions of curves, while in simulation scenario (2) we use the L2-like pseudo-

distance d1(·, ·) on the weak derivative. In both cases, probKMA is run for K = 2, 3,

minimum motif lengths cmin = 40, 50, 60, and 20 random initializations for each (K, cmin)

pair. The same initializations (i.e. the same initial membership matrix P(0) and shift ma-

trix S(0)) are employed for all ℓ and σ combinations. The weighting fuzziness parameter

is fixed to be m = 2. ProbKMA iterations are stopped when the global Bhattacharyya

distance BCmax = maxk=1,...,K BCk is ≤ 10−8. The maximum motif length is set to 70.

Elongation step is performed at every iteration, when BCmax ≤ 10−3; each center is elon-

gated up to 50% of its length in either directions, requiring that the relative objective

function Jm,k increase is less than 5% (i.e. (Jm,k,elong − Jm,k)/Jm,k < 0.05). Cleaning step

is performed every 50 iterations, when BCmax ≤ 10−4. Candidate motifs that belong to

less than 5 curves, as well as the ones with an average cluster silhouette index lower than

the 90th percentile of all overall average silhouette indices, are filtered out (see Section 3).

Post-processing is performed with default values (see Section S3).
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Figure S3: Simulation scenario (1) with ℓ = 200 and σ = 0.1. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S4: Simulation scenario (1) with ℓ = 200 and σ = 0.5. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).

16



0 10 20 30 40 50 60

Motif  1, σ=2

t

x(
t)

−
10

0
10

Motif
Occurrences

(a)

0 10 20 30 40 50 60

Motif  2, σ=2

t

x(
t)

−
10

0
10

Motif
Occurrences

(b)

0 50 100 150 200

Curves with motifs,  σ=0.5

t

x(
t)

−
10

0
10

(c)

Figure S5: Simulation scenario (1) with ℓ = 200 and σ = 2. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S6: Functional motif discovery results for simulation scenario (1) with ℓ = 300 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels

are obtained from 10 replications at each σ value. In 33 cases, exactly 2 motifs are found;

in the remaining 7 cases, one additional motif is discovered.
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Figure S7: Functional motif discovery results for simulation scenario (1) with ℓ = 400 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels are

obtained from 10 replications at each σ value. For all the considered noise levels, exactly

2 motifs are found.
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Figure S8: Functional motif discovery results for simulation scenario (1) with ℓ = 500 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels

are obtained from 10 replications at each σ value. In 34 cases, exactly 2 motifs are found;

in the remaining 6 cases, one additional motif is discovered.
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Figure S9: Simulation scenario (2) with ℓ = 200 and σ = 0.1. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S10: Simulation scenario (2) with ℓ = 200 and σ = 0.5. (a), (b) Two functional

motifs (black solid curves) and 12 aligned occurrences of each (red and blue dashed curves);

(c) 20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S11: Simulation scenario (2) with ℓ = 200 and σ = 1. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S12: Simulation scenario (2) with ℓ = 200 and σ = 2. (a), (b) Two functional motifs

(black solid curves) and 12 aligned occurrences of each (red and blue dashed curves); (c)

20 curves embedding occurrences of the two motifs (red and blue portions, respectively).
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Figure S13: Functional motif discovery results for simulation scenario (2) with ℓ = 200 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels are

obtained from 10 replications at each σ value. In 34 cases, exactly 2 motifs are found; in 5

cases, one additional motif is discovered; in 1 case, two additional motifs are discovered.
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Figure S14: Functional motif discovery results for simulation scenario (2) with ℓ = 300 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels

are obtained from 10 replications at each σ value. In 16 cases, exactly 2 motifs are found;

in 13 cases, one additional motif is discovered; in 11 cases, at least 2 additional motifs are

discovered.
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Figure S15: Functional motif discovery results for simulation scenario (2) with ℓ = 400 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels

are obtained from 10 replications at each σ value. In 2 cases, exactly 2 motifs are found;

in 18 cases, one additional motif is discovered; in 20 cases, at least 2 additional motifs are

discovered.
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Figure S16: Functional motif discovery results for simulation scenario (2) with ℓ = 500 and

various levels of σ. (a) Motif 1; (b) Motif 2. The boxplots in the lower half of the panels

are obtained from 10 replications at each σ value. In 16 cases, exactly 2 motifs are found;

in 13 cases, one additional motif is discovered; in 25 cases, at least 2 additional motifs are

discovered.
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To validate the results described in Subsection 4.2 and in the previous figures, we repeat

simulations in both scenarios 10 times, considering 10 different randomly generated pairs

of motifs and re-generating the curves’ background. Fig. S17 shows aligned occurrences of

functional motifs (for curve length ℓ = 200 and level of noise σ = 1), for the 10 different

pairs of functional motifs and set of curves in simulation scenario (1). Summary results

of 10 replications of functional motif discovery for each of these 10 datasets are shown in

Fig. S18. Figs. S19-S20 show the corresponding plots in simulation scenario (2). In all

cases, our method shows good performance and similar behaviors as curve length and noise

level change. This is evidence that its effectiveness does not depend on the specific shapes

of the motifs embedded in the curves. Moreover, these results corroborate the observations

we previously made. When the level of noise increases, the distance between true and

estimated motifs increases, true positives decreases, and false positive increases. These

performance measures are only slightly affected by an increase in curve length (and hence

in the background/motif ratio). Neither curve length nor noise level affects the motif length,

which the method usually underestimates. Fig. S21 shows the number of motifs discovered

in the 10 replications of functional motif discovery, for the 10 simulations in both scenarios.

Curve length affects the number of motifs discovered: when the background/motif ratio

increases, our method tends to discover more than two motifs in the curves.
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Figure S17: The two functional motifs (black solid curves) and the 12 aligned occurrences

of each (red and blue dashed curves), for 10 different datasets in simulation scenario (1),

for ℓ = 200 and σ = 1.

32



0.
0

0.
1

0.
2

0.
3

0.
4

Distance

σ
0.1 0.5 1 2

l=200
l=300
l=400
l=500

(a)
0

10
20

30
40

50
60

70

Length

σ
0.1 0.5 1 2

l=200
l=300
l=400
l=500

(b)

0
2

4
6

8
10

12

True positives

σ
0.1 0.5 1 2

l=200
l=300
l=400
l=500

(c)

0
1

2
3

4
5

False positives

σ
0.1 0.5 1 2

l=200
l=300
l=400
l=500

(d)

Figure S18: Summary of functional motif discovery results for the 10 different datasets in

simulation scenario (1). (a) Distance between true and estimated motifs; (b) Estimated

length of motifs; (c) Number of true positives; (d) Number of false positives. The boxplots

are obtained from 10 replications at each of the 10 different datasets, and both motifs (a

total of 200 observations). Outliers are not plotted, for clarity of visualization.
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Figure S19: The two functional motifs (black solid curves) and the 12 aligned occurrences

of each (red and blue dashed curves), for 10 different datasets in simulation scenario (2),

for ℓ = 200 and σ = 1.
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Figure S20: Summary of functional motif discovery results for the 10 different datasets in

simulation scenario (2). (a) Distance between true and estimated motifs; (b) Estimated

length of motifs; (c) Number of true positives; (d) Number of false positives. The boxplots

are obtained from 10 replications at each of the 10 different datasets, and both motifs (a

total of 200 observations). Outliers are not plotted, for clarity of visualization.
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Figure S21: Number of motifs discovered by functional motif discovery method for the

10 different datasets in (a) simulation scenario (1) and (b) simulation scenario (2). The

boxplots are obtained from 10 replications at each of the 10 different datasets (a total of

100 observations). Outliers are not plotted, for clarity of visualization.
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Finally, we consider the 10 simulations for the first scenario and examine how results

change with the number of random initializations used to run probKMA for each (K, c)

pair. To do this, we subsample the probKMA runs from the analysis already conducted,

which employed 20 random initializations, using only 5, 10, or 15 initializations for each

(K, cmin) pair. We re-run the post-processing steps and compare results with those previ-

ously obtained with all 20 initializations. Reassuringly, our method is robust to the number

of initializations employed, and retains its good performance even when probKMA is run

only 5 times for each choice of (K, cmin) (see Fig. S22).
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Figure S22: Summary of functional motif discovery results for the 10 datasets in scenario

(1), with 5, 10, 15 or 20 initializations for each (K, c) pair. (a) Distance between true and

estimated motifs; (b) Estimated length of motifs; (c) Number of true positives; (d) Number

of false positives. The boxplots are obtained from 10 replications at each of the 10 different

datasets, both motifs and all curve lengths (a total of 800 observations). Outliers are not

plotted, for clarity of visualization.
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S4.2 Comparison with time series motif discovery

Here we report additional information related to the comparison of our probKMA-based

functional motif discovery to time series motif discovery (Matrix Profile), discussed in

Subsection 4.3.

The definition of a motif in time series is different from the one we employ for functional

data. While our functional motifs recur across a set of curves, and possibly within individual

curves in the set, time series motifs are defined as recurring within a single time series,

usually starting from pairs of highly similar subseries. In particular, given a time series, a

motif length c, and a radius R, Lin et al. (2002) define the most significant motif 1-motif as

the subsequence of length c that has the highest count of matches, i.e. of pieces in the time

series with a distance less than R. Mueen et al. (2009) defines the most basic variant of

1-motif pair as the most similar pair of pieces of length c in a time series. Yeh et al. (2016,

2018) propose an algorithm, called Matrix Profile, to retrieve the nearest neighbor of every

subsequence of length c. This information is used to select the top motif pairs in the time

series. For each motif pair, all neighbors within distance R (i.e. all motif pair matches)

can then be retrieved. It must be noted that available time series motif discovery tools

are not statistical in nature and they do not estimate the level of noise of each motif. The

user needs to provide one, and usually only one, motif radius R as input to the discovery

procedure. On the contrary, probKMA-based discovery learns an appropriate radius for

each motif from the data.

We compare our probKMA-based functional motif discovery to Matrix Profile, as im-

plemented by the algorithm SCRIMP that is available online at http://www.cs.ucr.edu/

~eamonn/MatrixProfile.html. We employ a slightly modified version of this code, in

which the radius R is provided as input by the user (the original code fixes R = 1) and the

tool provides as output a maximum of 100 neighbors for each of the top 3 motif pairs found

(the original code only provides a maximum of 10 neighbors). The distance employed is

the z-normalized Euclidean distance, which is defined as the Euclidean distance between

standardized subsequence and corresponds to a correlation distance between subsequences:

d(T,Q) =
√
2c (1− cor(T,Q)), with c the length of T and Q.
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We consider the two simulation scenarios introduced in Subsection 4.2, focusing on two

specifications: the simple case of short curves and low noise level (ℓ = 200 and σ = 0.1), and

the complex case of long curves and high noise level (ℓ = 500 and σ = 2). For probKMA-

based discovery, we use the same parameters as in Subsection 4.2 (K = 2, 3, minimum

motif lengths cminc = 40, 50, 60, and 20 random initializations for each (K, cmin)). We run

Matrix Profile on one time series obtained by concatenating the 20 curves one after the

other and using different choices of radius (from R = 1 to R = 150). Since the tool requires

also the motif length as input, we use the true motif length c = 60 (a newer implementation

of Matrix Profile, introduced in Linardi et al., 2018, can find all motif pairs in a given range

of lengths).

Table S1 reports results for simulation scenario (1), discussed in Subsection 4.3. Table S2

shows the results for an additional simulation in scenario (1), using motifs in Fig. S17(s)-

(t), while Table S3 reports results of the comparison between probKMA-based functional

motif discovery and Matrix Profile, for scenario (2). The results are similar to the ones

in Table S1: Matrix Profile works very well in the simple case (ℓ = 200, σ = 0.1), but

in the complex case (ℓ = 500, σ = 2) it fails to recognize one motif, while at the same

time it includes many false positives; probKMA-based functional motif discovery achieve

a good performance in both cases. In addition, we observe how the choice of the radius R

is of utmost importance in Matrix Profile: if the radius is too small, not all occurrences

are found, while if it is too large many false positives might be included. Importantly, the

optimal value for the radius depends not only on motif length and on the level of noise, but

also on the shapes of the motifs. Indeed, data employed in Tables S1 and S2 have exactly

the same motif length and noise level, but the optimal values of radius in the simple case

(ℓ = 200, σ = 0.1) are R = 30 and R = 90, respectively.
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Table S1: Comparison of probKMA-based functional motif discovery and Matrix Profile on

simulation scenario (1) (TP: true positives; FP: false positives). For probKMA, we report

median results (and median absolute deviations) across 10 repeated simulations.

probKMA Matrix Profile

Radius — 1 10 20 30 40 50 70 90 110 130 150

Motif 1
TP 12 (0) 2 6 8 12 12 12 12 12 12 12 12

ℓ = 200 FP 0 (0) 0 0 0 0 0 0 0 0 0 0 0

σ = 0.1
Motif 2

TP 12 (0) 2 7 10 12 12 12 12 12 12 12 12

FP 0 (0) 0 0 0 0 0 0 0 0 0 0 0

Motif 1
TP 11 (0.7) 0 0 0 0 0 0 0 1 2 2 2

ℓ = 500 FP 2 (1.5) 2 5 8 8 9 10 13 17 19 24 27

σ = 2
Motif 2

TP 12 (0) 2 2 2 12 12 12 12 12 10 12 12

FP 1 (1.5) 0 1 2 8 16 23 34 51 71 82 88

Table S2: Comparison of probKMA-based functional motif discovery and Matrix Profile

on an additional simulation in scenario (1) using motifs in Fig. S17(s)-(t) (TP: true posi-

tives; FP: false positives). For probKMA, we report median results (and median absolute

deviations) across 10 repeated simulations.

probKMA Matrix Profile

Radius — 1 10 20 30 40 50 70 90 110 130 150

Motif 1
TP 12 (0) 0 4 6 6 6 6 6 12 12 12 12

ℓ = 200 FP 0 (0) 2 0 0 0 0 0 0 0 0 0 0

σ = 0.1
Motif 2

TP 12 (0) 2 9 12 12 12 12 12 12 12 12 12

FP 0 (0) 0 0 0 0 0 0 0 0 0 0 0

Motif 1
TP 11.5 (0.7) 0 0 0 0 0 0 1 1 1 0 1

ℓ = 500 FP 0 (0) 2 2 4 4 5 8 10 17 22 27 35

σ = 2
Motif 2

TP 10 (1.5) 2 4 7 8 8 12 12 7 7 12 12

FP 1 (0) 0 0 1 2 2 5 13 12 13 29 34
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Table S3: Comparison of probKMA-based functional motif discovery and Matrix Profile on

simulation scenario (2) (TP: true positives; FP: false positives). For probKMA, we report

median results (and median absolute deviations) across 10 repeated simulations.

probKMA Matrix Profile

Radius — 1 10 20 30 40 50 70 90 110 130 150

Motif 1
TP 12 (0) 2 6 8 12 12 12 12 12 12 12 12

ℓ = 200 FP 0 (0) 0 0 0 0 0 0 0 0 0 0 0

σ = 0.1
Motif 2

TP 12 (0) 2 7 11 12 12 12 12 12 12 12 12

FP 1 (0) 0 0 0 0 0 0 0 0 0 0 0

Motif 1
TP 12 (0) 0 0 0 0 0 0 0 0 2 3 6

ℓ = 500 FP 0 (0) 2 2 2 4 6 8 16 27 37 53 68

σ = 2
Motif 2

TP 12 (0) 2 4 8 11 11 11 12 12 12 12 12

FP 2 (0) 0 0 0 1 2 7 13 18 25 29 36
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S4.3 Comparison with non-sparse and sparse functional cluster-

ing methods

We consider 2 clusters and generate 9 curves for each cluster, in the following four different

scenarios (depicted in Fig. S23): (a) curves in the two clusters are aligned and they differ

on the entire domain; (b) curves in the two clusters are misaligned and they differ on the

entire domain; (c) curves in the two clusters differ on a portion of the domain and this

portion is aligned; (d) curves in the two clusters differ on a portion of the domain and this

portion is misaligned. These four scenarios can be seen as special cases of the more general

functional motif discovery problem, in which each curve contains exactly one motif and

(a) curves are themselves the entire aligned motifs; (b) curves are themselves the entire

misaligned motifs; (c) curves contain aligned motifs; (d) curves contain misaligned motifs.

In each scenario, we run the standard functional K-means (Tarpey and Kinateder,

2003), the K-means with (global) alignment of Sangalli et al. (2010), the sparse clustering

technique of Floriello and Vitelli (2017), and probKMA with Euclidean distance andK = 2.

For the sparse clustering method, we also take the sparsity parameter (i.e. the minimum

length of the unselected part of the domain) as known, setting it to the curve length minus

the motif length. We set the motif length parameter in probKMA in the same way. In K-

means with (global) alignment and probKMA, we consider only shift alignments. We then

evaluate clustering results by means of a classification error rate (1 minus the Rand index;

Rand, 1971) that is equal to 0 if every curve is correctly classified and (sinceK = 2) is equal

to 0.5 if the classification is as good as random. Since probKMA produces a probabilistic

clustering, we compute the classification error rate after assigning each curve to the cluster

with highest membership probability. Results are shown in Table S4.

45



0 10 20 30 40 50 60

Aligned motifs,  σ=2

t

x(
t)

−
10

0
10

(a)

0 20 40 60 80

Misligned motifs,  σ=2

t

x(
t)

−
10

0
10

(b)

0 50 100 150 200

Curves with aligned motifs,  σ=2

t

x(
t)

−
10

0
10

(c)

0 50 100 150 200

Curves with misaligned motifs,  σ=2

t

x(
t)

−
10

0
10

(d)

Figure S23: Simulated data for the comparison of functional clustering methods, σ = 2.

(a) Aligned motifs; (b) Misaligned motifs; (c) Curves with aligned motifs; (d) Curves with

misaligned motifs. The motifs are shown in red and blue and the reminder of the curves

in black.
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Table S4: Comparison of probKMA with functional clustering methods in the four simu-

lation scenarios of Fig. S23. We report means (and standard deviations) of classification

error rates across 10 repetitions.

Scenario K-means K-means with (global) alignment sparse clustering probKMA

σ = 0.1

(a) 0 (0) 0 (0) 0 (0) 0 (0)

(b) 0.26 (0.13) 0.12 (0.19) 0.08 (0.18) 0 (0)

(c) 0.29 (0.22) 0.44 (0.08) 0.05 (0.17) 0.04 (0.07)

(d) 0.49 (0.05) 0.49 (0.06) 0.52 (0) 0.01 (0.04)

σ = 2

(a) 0 (0) 0 (0) 0 (0) 0 (0)

(b) 0.26 (0.18) 0.16 (0.21) 0.42 (0) 0 (0)

(c) 0.28 (0.23) 0.38 (0.17) 0.11 (0.22) 0.04 (0.10)

(d) 0.44 (0.07) 0.49 (0.05) 0.53 (0.01) 0.06 (0.08)
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Fig. S24 and Table S5 show an additional comparison between standard functional

K-means, K-means with (global) alignment, sparse clustering and probKMA, in four sce-

narios: (a) curves in the two clusters are aligned and they differ on the entire domain; (b)

curves in the two clusters are misaligned and they differ on the entire domain; (c) curves

in the two clusters differ on a portion of the domain and this portion is aligned; (d) curves

in the two clusters differ on a portion of the domain and this portion is misaligned.
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Figure S24: Data for an additional comparison of functional clustering methods, σ = 2.

(a) Aligned motifs; (b) Misaligned motifs; (c) Curves with aligned motifs within them; (d)

Curves with misaligned motifs within them. When the curves are broader than the motifs

defining the two clusters, the motifs are shown in red and blue and the reminder of the

curves in black.
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Table S5: Additional comparison of probKMA with non-sparse and sparse functional clus-

tering methods in the four simulation scenarios of Fig. S24. We report means (and standard

deviations) of classification error rates across 10 repetitions.

Scenario K-means K-means with (global) alignment sparse clustering probKMA

σ = 0.1

(a) 0 (0) 0 (0) 0 (0) 0 (0)

(b) 0.11 (0) 0.08 (0.15) 0.11 (0) 0 (0)

(c) 0.28 (0.14) 0.40 (0.19) 0.14 (0.22) 0.08 (0.10)

(d) 0.48 (0.07) 0.48 (0.07) 0.50 (0) 0.13 (0.11)

σ = 2

(a) 0 (0) 0 (0) 0 (0) 0 (0)

(b) 0.11 (0) 0.12 (0.21) 0.11 (0) 0 (0)

(c) 0.43 (0.10) 0.35 (0.15) 0.19 (0.24) 0.12 (0.10)

(d) 0.46 (0.08) 0.42 (0.09) 0.46 (0.05) 0.09 (0.10)
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S5 Real data applications: additional results

S5.1 Global and local clustering of Berkeley growth curves

The Berkeley Growth Study (provided by the R package fda) consists of the heights of 39

boys and 54 girls from age 1 to 18. We estimate height curves and their derivatives (growth

velocity curves) using monotone B-spline smoothing with order 6, knots at observed ages,

roughness penalty on third derivative, and λ = 1/
√
10, as suggested in the Subsection 5.2.5

of Ramsay et al. (2009). After smoothing, each curve is evaluated at 101 equidistant times

between 1 and 18 years, in order to obtain 100 sub-intervals (the age difference between

consecutive time points is exactly 0.17 years). Fig. S25 shows the resulting smoothed height

and growth velocity curves.
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Figure S25: Smoothed Berkeley Growth Study curves, color-coded according to the children

sex (39 boys in cyan and 54 girls in magenta). (a) Height curves; (b) Growth velocity curves

(height curve derivatives).

First, we perform a global probabilisticK-means running probKMA withK = 2 and L2-

like pseudo-distance d1(·, ·) between the entire curves (no alignment permitted). Note that

this is equivalent to employing the L2-like distance d0(·, ·) on the growth velocity curves. We

run probKMA 10 times, using different random initializations. Notably, all 10 initializations

produced the same results (the differences are in the order of 10−7 for the functional Jm,
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Figure S26: Results of global probabilistic K-means (with K = 2) for the Berkeley Growth

curves, color-coded based on the membership to Cluster 1 (from red when it is 0 to blue

when it is 1). (a) Growth curves; (b) Growth velocities; (c) Growth velocities for curves

whose membership is uncertain (probabilistic membership between 0.4 and 0.6); (d) Prob-

abilistic memberships for boys and girls. Dots show misclassified children.

and maximum 10−4 for the probabilistic memberships). Results are shown in Fig. S26: the

clustering is based on the timing of the main pubertal growth spurt, that generally happens

in advance for girls. Children with uncertain memberships (Fig. S26(c)) have intermediate

pubertal growth spurt timing. Assigning each curve to the cluster with highest membership
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probability, we obtain clusters that differ on the main pubertal growth spurt timing and

roughly corresponds to boys and girls (boys grow later), with 11 misclassified children (2

boys and 9 girls, classification error rate 0.21, Fig. S26(d)). Notably, classic functional K-

means with K = 2 and Euclidean distance between height curve derivatives (i.e., Euclidean

distance between growth velocity curves) produces exactly the same clusters. However,

our probabilistic approach permits, in addition, to visualize curves whose membership is

uncertain and to check the probabilistic memberships of misclassified children.
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Figure S27: Cluster assignments in local probabilistic clustering with portions of length

8.5 years, based on the median distance between curve portions and cluster centers. (a)

Histogram of distances between curve portions and cluster centers. The red vertical bar

indicates the median distance used for probabilistic membership dicotomization; (b) Sil-

houette plot of the resulting clustering.

To fully exploit probKMA and gain additional insights, we perform a second analysis
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Figure S28: Local clustering results for Berkeley curves. (a) Growth velocity curves, with

clustered portions of c = 8.5 years color-coded based on the probabilistic membership to

Cluster 1 (from red when it is 0 to blue when it is 1); (b) Cluster centers (black) with

aligned clustered portions.

in which we cluster curves locally, using again the L2-like pseudo-distance d1(·, ·) between

growth velocity curves, looking for K = 2 clusters of fixed length c = 51, corresponding

to 8.5 years (hence allowing for a maximum shift of 8.5 years). We run the algorithm 10

times, using different initializations, and we select the results corresponding to the minimum

value for the function Jm. We perform cluster assignment dicotomizing the probabilistic

membership matrix P based on the median of all distances d1(x̃i,vk), i.e., we set them to

1 when the distance between the portion of curve and the cluster center is lower than the

median distance (see Section S2 and Fig. S27). The silhouette plot of Fig. S27(b) shows

that this clustering has a good overall quality, as indicated by the high overall average

silhouette index S = 0.89 (reported at the bottom of the plot); both clusters are good,

since they both have high average silhouette index (S1 = 0.89 and S2 = 0.89 for the two

clusters, respectively, as indicated on the right of the plot); finally, all generalized silhouette

indices sj are positive and rather large (as indicated by the gray bars in the plot), hence

all portions are appropriately assigned. As a result, we obtain two clusters of 50 and 43

portions, respectively. Interestingly, 32 and 25 curves belong exclusively to Cluster 1 and
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2, respectively, while 18 curves belong to both clusters (i.e., each of these 18 curves has

a portion belonging to Cluster 1 and another portion, possibly overlapping the first one,

belonging to Cluster 2); 18 curves do not belong to any cluster. Since the curves are aligned

and the pubertal growth spurt differs between boys and girls only in its timing (boys grow

later), this local clustering does not separate boys and girls. Instead, Cluster 2 captures a

particular shape of the pubertal growth spurt, which is shared by several children, while

Cluster 1 captures the decrease in growth velocity that is typical in children between 2 and

3 years of age.

S5.2 Local clustering of Italian Covid-19 excess mortality curves

We consider raw mortality data published by the Italian Institute of Statistics (ISTAT) on

June 4th, 20201 and process them as explained in Subsection 5.1. Population data in the

Italian municipalities – employed to normalize the excess mortality curves in the different

Italian regions – is available from ISTAT at January 1st, 20192. Fig. S29 shows the raw

Covid-19 excess mortality rate curves for the 20 Italian regions, while Figs. S30-S31 report

additional results related to the analysis presented in Subsection 5.1.

1Available at https://www.istat.it/it/files/2020/03/Dataset-decessi-comunali-giornalieri-e-tracciato-

record-4giugno.zip.
2Can be downloaded from I.Stat website at http://dati.istat.it/Index.aspx (Popolazione e

famiglie/Popolazione/Popolazione residente al 1◦ gennaio/Tutti i comuni/2019).

55



0
5

10

Covid−19 excess mortality

E
xc

es
s 

m
or

ta
lit

y 
ra

te
 (

×
10

−5
)

1 
Ja

n
5 

Ja
n

9 
Ja

n
13

 J
an

17
 J

an
21

 J
an

25
 J

an
29

 J
an

2 
F

eb
6 

F
eb

10
 F

eb
14

 F
eb

18
 F

eb
22

 F
eb

26
 F

eb
1 

M
ar

5 
M

ar
9 

M
ar

13
 M

ar
17

 M
ar

21
 M

ar
25

 M
ar

29
 M

ar
2 

A
pr

6 
A

pr
10

 A
pr

14
 A

pr
18

 A
pr

22
 A

pr
26

 A
pr

30
 A

pr

Abruzzo
Basilicata
Calabria
Campania
Emilia−Romagna
Friuli Venezia Giulia
Lazio
Liguria
Lombardia
Marche
Molise
Piemonte
Puglia
Sardegna
Sicilia
Toscana
Trento/Bolzano
Umbria
Valle d'Aosta
Veneto

Figure S29: Raw Covid-19 excess mortality rate curves for the 20 Italian regions. Vertical

black lines represent national lock down (March 9th) and closure of all non-essential eco-

nomic activities (March 23rd).
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Figure S30: Distances between curve portions and cluster centers for probKMA withK = 2

and fixed length of c = 65 days. (a) Distances between all curve portions and cluster centers.

The red vertical bar indicates the median distance; (b) Distances between curve portions

belonging to the two clusters (assignment based on the highest probabilistic membership)

and cluster centers.
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Figure S31: ProbKMA results with K = 3 and fixed length of c = 65 days. (a) Cluster

centers (thick black curves) with aligned portions of curves; (b) Alignment between portions

of curves within each cluster (start day of each portion).
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S5.3 Motif discovery in mutagenesis data

We estimate high-resolution neutral mutation rates using the same pipeline as in Kurup-

pumullage Don et al. (2013). First, we identify neutral DNA by considering all repeats

ancestral to human and macaque (AR subgenome, see e.g. Hardison et al., 2003). In

particular, we consider the human reference genome hg19 and we select all the repeats

(interspersed repeats and low complexity DNA sequences) from RepeatMasker track (Smit

et al., 2010) using Galaxy (Blankenberg et al., 2010; Goecks et al., 2010), excluding L1PA1-

7, L1HS, AluY (primate- or human-specific elements) and Conserved Non-Exonic Elements

(CNEEs, putative regulatory regions detected by Lowe and Haussler, 2012). In total, we

obtain 5 407 927 AR regions, covering ∼ 43% of the entire genome. We then consider

the 47 hot regions identified by Kuruppumullage Don et al. (2013). Since these regions

are provided on the hg18 release of the human reference genome, we use the lift-over tool

(Blankenberg et al., 2010) to convert them to hg19. Requiring that a minimum of 90%

of the nucleotides remap to the hg19 release, we are able to retain 43 regions – corre-

sponding to 91.5% of the initial regions. We partition these 43 regions in 1-kb windows,

and we discard the ones with less than 25% AR coverage to avoid very inaccurate rate

estimates. Afterwards, we extract multiple alignments corresponding to AR subgenome in

each 1-kb window, using the 46-way multiZ alignment available in Galaxy (Blankenberg

et al., 2011), as depicted in Fig. S32. To estimate substitution rates, we fetch pairwise

alignments of human and orangutan (ponAbe2 assembly) reference genomes, masking low

quality nucleotides within each block (in particular, we require an orangutan PHRED score

greater than 20). Next, we identify nucleotide substitutions, i.e., the number of different

nucleotides in between the aligned human and orangutan genomes. Finally, we estimate

the substitution rate in each window as the number of substitutions divided by the total

number of compared nucleotides in the window, using the Jukes-Cantor model (Jukes and

Cantor, 1969). Although we require that at least the 25% of each considered window is

covered by AR neutral subgenome, it can happen that alignments are present only in a

portion of this subgenome. In this case rate estimation can be inaccurate, since a very low

number of nucleotides corresponding to alignments are compared to compute it.
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Figure S32: Schematic summary of substitution rate estimation.
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Figure S33: Example of substitution rate curve. The red dashed step function reports the

rates estimated in 1-Mb windows by Kuruppumullage Don et al. (2013); the green curve

with points represents the high-resolution rates estimated in 1-kb windows (only accurate

values are shown); the blue curve represents the pre-processed curve, obtained after missing

data imputation and local smoothing.

The resulting 43 substitution rate curves are highly noisy, and contain several missing

or inaccurate values, due to the segmented nature of AR subgenome and of the multiple

alignments considered to estimate rates (see, e.g., the green curve with points in Fig. S33).

We assume that rates vary continuously in nearby windows along the genome, and we

propose to pre-process them with stochastic regression imputation and local smoothing,

filling small gaps while retaining large gaps (i.e. long stretches of missing values) for which
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Figure S34: Quality of the substitution rate estimates in the 43 hot regions. Each bar

represents the percentage of 1-kb windows with an accurate estimated rate (green) and the

percentage of 1-kb windows with an imputed rate (orange).

we do not have enough information. We flag as inaccurate all rates estimated using less

than 200 nucleotides, and we fill in all gaps comprising at most 5 windows using stochastic

weighted regression imputation (see e.g. Enders, 2010). For each sequence of contiguous

windows with missing or inaccurate rates (corresponding to a gap in the curve), we fit

a weighted simple linear regression model for the rate – considering 2 neighbor windows

on each side of the gaps and weighting each observation based on the reliability of the

rate estimate (i.e., employing a weight proportional to the number of nucleotides used to

estimate the rate) – and we impute the values according to the model predictions. Next,

we add a residual noise to the imputed values, randomly sampling from the residuals of the

fitted model with probabilities proportional to their weights. Notably, the vast majority

of gaps in our data is quite small (≤5 windows), hence with this missing-data imputation

pre-processing step we are able to fill 92% of the gaps, reducing missing values to 17% of

the windows (see Fig. S34). Finally, we employ local polynomials of degree 4, bandwidth

25 and Gaussian kernel on each curve to obtain a smooth functional object and compute

the derivative (see the blue curve in Fig. S33).

We employ the Sobolev-like distance d̃0.5(·, ·) to measure similarities between pieces of

curves, requiring the length of the intersection between the domain D̃i,sk,i of each shifted
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curve and the interval (0, ck) where the cluster center is defined to be at least 80% of the

interval length ck, and at least the minimum motif length cmin (see Section S2). We run

probKMA with K = 2, 3, 4, 5 and minimum lengths cmin = 40, 50, 60, 70, using 10 random

initializations for each (K, c) pair. The maximum motif length cmax is set to 150. We note

that the choice of cmin must be compatible with the pre-processing employed to obtain

smooth curves and derivatives from discretely observed data (see also comments in the

Discussion). Indeed, at very small scales we might observe “false” motifs that are artificially

inserted in the curves through missing-data imputation and/or smoothing. In particular,

the mutagenesis curves contain artificially-introduced “noisy straight lines” of length ≤ 5,

that are employed to fill small gaps. In addition, these curves might contain more complex

“false” motifs due to the local polynomials of degree 4 employed to smooth the data.

However, such motifs should be quite short, since a bandwidth of 25 and a Gaussian kernel

are used for local polynomials. Hence, we do not expect any “false” motif of length ≥ 40

windows – the smallest motif length we consider. Weighting fuzziness parameter is fixed to

be m = 2, and probKMA iterations are stopped when the global Bhattacharyya distance

BCmax = maxk=1,...,K BCk is ≤ 10−8. The elongation step is performed every 5 iterations,

when BCmax ≤ 10−3; each center is elongated up to 50% of its length in either directions,

requiring that the increase of the relative objective function Jm,k is less than 5% (i.e., that

(Jm,k,elong − Jm,k)/Jm,k < 0.05). The cleaning step is performed every 50 iterations, when

BCmax ≤ 10−4.

ProbKMA produces clusters of varying quality, and candidate motifs of different lengths

(see Fig. S35(a)-(c)). Candidate motifs that belong to less than 5 curves, as well as the ones

with an average cluster silhouette index lower than the 95th percentile of all overall average

silhouette indices, are filtered out (see Fig. S35(a)). As a result, a total of 54 motifs (out

of 560 candidate motifs) are retained for post-processing phase. When computing pairwise

distances between candidate motifs in the functional motif discovery post-processing (see

Section S3, step 1), we require a minimum overlap of 75% of the shortest motif in each

pair. Hierarchical clustering dendrogram is cut at height 2Rall, where the global radius Rall

is set equal to 20 (see Section S3, steps 3-4, and Fig. S35(d)-(e)). Default values are used
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for group-specific radii Rm and motif selection in each group (see Section S3). Fig. S36

shows motifs found by probKMA-based functional motif discovery and their occurrences

in the substitution rate curves, while Fig. S37 shows the genomic positions of four of the

discovered motifs.
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Figure S35: ProbKMA results for K = 2, 3, 4, 5 and cmin = 40, 50, 60, 70, and functional

motif discovery post-processing results. (a) Average cluster silhouette index; (b) Candidate

motif length; (c) Example of silhouette plot for K = 3 and cmin = 50, showing a clustering

of doubtful quality (overall silhouette index S = 0.49), with one very good and compact

candidate motif (cluster 1, with a very high average silhouette index S1 = 0.98), and two

bad candidate motifs (clusters 2 and 3, with very low average silhouette indices S2 = 0.05

and S3 = 0.43 and some bad assigned portions with negative silhouette index); (d) Selection

of the global radius Rall used to merge similar candidate motifs in the post-processing; (e)

Dendrogram for merging candidate motifs, cut at height 2Rall.
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Figure S36: Results of probKMA-based functional motif discovery in substitution rate

curves. The discovered motifs are plotted in their original scale (colored thick curves),

together with all occurrences in the data (black solid curves).
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Figure S37: Genomic positions of motifs occurrences (blue) in hot regions (red). (a) Motif

4; (b) Motif 8; (c) Motif 12; (d) Motif 13.
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Table S6 reports the 35 genomic features considered in the investigation of the genomic

landscape of the discovered motifs (see Subsection 5.2 and Fig. 5(b)).

Type Reference

Chromatin structure

DNase I hypersensitive sites Signal ENCODE (H1-ESC)

RNA Polymerase II Coverage Barski et al. (2007)

CTCF Signal ENCODE (H1-ESC)

H2AFZ Signal ENCODE (H1-ESC)

Transcription regulation

H3K27ac Signal ENCODE (H1-ESC)

H4K20me1 Signal ENCODE (H1-ESC)

H3K36me3 Signal ENCODE (H1-ESC)

H3K4me1 Signal ENCODE (H1-ESC)

H3K4me2 Signal ENCODE (H1-ESC)

H3K4me3 Signal ENCODE (H1-ESC)

H3K79me2 Signal ENCODE (H1-ESC)

H3K9ac Signal ENCODE (H1-ESC)

H3K9me3 Signal ENCODE (H1-ESC)

H3K27me3 Signal ENCODE (H1-ESC)

DNA methylation

5-Hydroxymethylcytosine Count Szulwach et al. (2011)

Sperm hypomethylation Count Molaro et al. (2011)

Selection

Most conserved elements Coverage UCSC Genome Browser

CpG islands Coverage UCSC Genome Browser

Exon Coverage UCSC Genome Browser

GC content Percentage Genome-wide screening

Slippage

G-quadruplexes Coverage Cer et al. (2011)

A-phased repeats Converage Cer et al. (2011)

Direct repeats Coverage Cer et al. (2011)

Inverted repeats Coverage Cer et al. (2011)

Mirror repeats Coverage Cer et al. (2011)

Z DNA motifs Coverage Cer et al. (2011)

Mononucleotides Coverage Genome-wide screening
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Transposition

DNA transposons Coverage UCSC Genome Browser

Alu Coverage UCSC Genome Browser

MIR Coverage UCSC Genome Browser

LTR elements Coverage UCSC Genome Browser

Gene expression

hESC gene expression Weighted average UCSC Genome Browser

Replication

Replication origins Count Besnard et al. (2012)

Recombination

Recombination hotspots Count Myers et al. (2008)

Table S6: List of genomic landscape features considered

in Fig. 5(b).
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